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Abstract—Creating detection rules of attacks on web 

applications is not a trivial task, especially when the attacks are 

launched by experienced hackers. In such a situation, human 

expertise is essential to produce effective results. However, 

human users are easily overloaded by the huge input data, which 

is meant to be analyzed, learned from, and used to develop 

appropriate detection rules. To support human users in dealing 

with the information overload problem while developing 

detection rules of web application attacks, we propose a novel 

technique and tool called Interactive Visual Decision Tree 

(IVDT). IVDT is a variant of the popular decision tree learning 

technique introduced in research fields such as machine learning 

and data mining, with two additionally important features: 

visually supported data analysis and user-guided tree growing. 

Visually supported data analysis helps human users cope with 

high volume of training data while analyzing each node in the 

tree being built. On the other hand, user-guided tree growing 

allows human users to apply their own expertise and experience 

to create custom split condition for each tree node. A prototype 

implementation of IVDT is built and experimented to evaluate its 

effectiveness in terms of detection accuracy achieved by its users 

as well as ease of working with. The experiment results prove 

some advantages of IVDT over traditional decision tree learning 

method, but also point out its problems that should be handled in 

future improvements. 
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I. INTRODUCTION 

Decision tree learning is a popular technique for solving 
object classification problem, which is a common task in 
research fields such as machine learning and data mining. One 
of the reasons for this popularity is its ability to handle multi-
dimensional data well. Another notable feature of decision tree 
learning is its human friendly presentation of learning result. 
Compared with other classification techniques like artificial 
neural network or support vector machine, whose results are 
rather black boxes to external users, decision tree learning 
produces hierarchical sequences of classification rules that are 
easy to understand and follow. It is even better when these 
sequences of rules are displayed in visual forms in which the 
most popular one is node-link diagram. In these diagrams, 
nodes correspond to collection of data objects, and links (i.e. 
edges) correspond to conditions to partition similar objects into 
subsets. Human users can classify a data object manually by 
starting at the root node and subsequently following links 

whose conditions the object satisfies, until reaching a leave 
node, with a specific class label, i.e. the classification result. 

The presentation of decision trees and the way those trees 
are constructed are more or less can be done manually by a 
human user. Indeed, there are several unique benefits by 
integrating human users into decision tree building process. 
Firstly, it is the direct application of users‟ specific domain 
knowledge to construct trees. Automatic tree building 
algorithms tend to serve as general solutions to classification 
problems, so it is difficult or not natural to inject expert 
knowledge to guide the tree building process. Furthermore, 
algorithms implementers are usually data scientists, not domain 
experts, hence they may not see the problems being solved the 
way actual users see. In contrast, when real users are involved 
into tree building process, they can guide the construction 
using their own knowledge and experience. As an example, 
although “first name” and “password” are both, textual data, 
their meaning and natural pattern are different. Considering 
them as text, as general decision tree algorithms do, will lost 
their important differences. These losses will not happen when 
domain knowledge is applied appropriately when building 
trees. 

Secondly, when human users actively participate in tree 
construction phase, they will understand more clearly and use 
the resulted tree more effectively in classification phase. By 
joining the tree construction process, human users get an 
overview picture of the dataset and the distribution of each 
attribute. From this knowledge, they see the reasons behind 
node splitting rules and priorities among data object‟s 
attributes. This gained insight, in turn, helps them work more 
effectively with the resulted tree in classifying data objects. 
They can even start over the tree construction phase when 
seeing the final result not satisfying. Starting over with 
experience gained from previous works can create a total 
different tree. Again, this effect is not trivial to implement in 
automatic tree construction. 

The last, but not least, benefit is the flexibility in dealing 
with different data types and forming node splitting conditions 
human users can achieve. In automatic tree construction, only a 
limited data types, such as numeric or nominal, can be used 
directly. More complicated types need to go through a 
reprocessing phase before they can be used. Because the 
reprocessing and construction phases are independent, it is not 
possible to determine in advance if a reprocessing method is 
suitable for a particular data attribute. This makes the 
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reprocessing phase complex and time-consuming. On the other 
hand, in human-guided tree construction, reprocessing task is 
integrated into tree construction phase. As a result, using and 
changing reprocessing methods have instant feedbacks, thereby 
reducing time and complexity. Furthermore, unlike automatic 
algorithms which only produce simple predefined splitting 
rules, human users can enter any computable Boolean formulas 
for each tree node, making it quite flexible for classifying 
complex objects. 

With the above benefits, it is natural to integrate human 
users into decision tree building technique to solve complex 
classification problems, one of which is the attack recognition 
of users‟ inputs on web applications. There are several reasons 
to integrate human security administrators into decision tree 
building process for the web application attack recognition 
problem. The first reason is computer attacks in general, and 
web application attacks in particular, are usually complicated. 
Because the web is one of the most popular platforms used 
today, its users have many differences in technical skills and 
background. This results in the determination whether a piece 
of user input is normal or not cannot be completely objective. 
For a particular instance of user input, one security 
administrator may see it as normal, yet another administrator 
may see it as abnormal. That is because besides the input data 
itself, it is necessary to consider its surrounding context, such 
as the user who creates it and the environment in which it 
resides, to make a fully informed decision. Without the direct 
involvement of a human administrator, it is not easy to 
integrate this context information into the classifier. 

The second reason is related directly to the technique used 
to recognize web application attacks. As mentioned earlier, 
among machine learning methods, decision tree learning is one 
of the most human-friendly approaches, both for constructing 
classifiers as well as using learned results to classify data 
objects. As a result, integrating human users into decision tree 
learning is a natural choice to take advantages of the human 
reasoning capability and powerful computer data processing at 
the same time. This leads to the next question that we need to 
address: how to integrate human administrators into decision 
tree building effectively? 

Because human users interact with computing systems via 
the user interface components, these are the places where most 
integration happens. The user interface should be designed to 
communicate effectively with its main users, in this case are 
the web application security administrators. Although there are 
many methods of communication, interactive visual interface is 
one of the most preferred methods. Unlike traditional text-
based command line interface, interactive visual interface can 
provide more natural interaction and intuitive appearance to the 
users. Furthermore, when working with a high volume of input 
data, displaying it visually helps users overcome the 
information overload problem. 

From the reasons mentioned above, in this paper we 
describe a method and tool called Interactive Visual Decision 
Tree (IVDT) whose purpose is to support web application 
security administrators in creating attack detection rules. IVDT 
is an interactive visual tool for building decision trees, 
specifically targeting at web application input classification. 

Given a collection of data input objects and their respective 
labels, security administrators can use IVDT to build visual 
decision trees which are used later to classify unknown inputs. 
But before proceeding further, it should be noted that although 
IVDT provide some unique advantages, it is not meant to 
replace automatic classification methods. Instead, we believe it 
should be used together with other techniques to utilize the 
strengths of all, especially in a complicated domain like 
security. 

The rest of the paper is structured as follow: In Section II, 
we review the related works for this research; in Section III, the 
user interaction and data visualization of IVDT are described in 
detailed; the prototype implementation of IVDT is introduced 
in Section IV; Section V is used to describe our experiments 
and their results; and finally Section VI concludes the paper 
with lessons learned and a plan for future works. 

II. RELATED WORKS 

A. Decision Tree Learning 

One of the most popular decision tree learning algorithms is 
the ID3 (Iterative Dichotomiser 3) proposed by Quinlan [1]. 
The input for this algorithm is a dataset containing data objects 
in many classes. Each data object in the dataset has the same 
number of data attributes and is in one particular class. At each 
step, ID3 selects a data attribute that has not been used and 
creates a formula on it to split the data objects into subsets. All 
data objects in a common subset have the same outcome when 
applying the split formula. The decision to select which unused 
attribute at a step to create a split formula is based on a value 
called information gain of that attribute. 

The information gain (IG) is defined as 

    (      )  ∑ (        ) (1) 

In (1), H(parent) is the entropy of the parent node before 
splitting, and ΣH(children) is the weighted sum of the entropy 
of all child nodes that are the result of the split. Entropy of a 
node N, in turn, is defined as 

 ( )   ∑(        )   (2) 

In (2), pi is the percentage of data objects in node N having 
i as the common class label. The goal of ID3, and other 
decision tree learning methods, in creating split conditions is to 
have the child nodes purer than the parent node. One of the 
disadvantages of ID3 is its inability to work on continuous 
domain data types without a preprocessing step. 

Some of the limitations of ID3 are solved in C4.5, another 
decision tree learning method also proposed by Quinlan [2]. 
Among the improvements, C4.5 algorithm can handle 
continuous data attributes by generating a threshold for each of 
them, and use this value to split the parent node into two child 
nodes. Data objects having attribute values higher than the 
respected threshold are put into one child node, and the rest are 
put into the other child node. Another notable improvement of 
C4.5 compared with ID3 is that it can work with data objects 
missing values on some attributes. These missing values are 
simply not used in entropy and information gain calculations 
when deciding which attributes to use in split formulas. 
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CART (Classification and Regression Trees) is another 
popular technique for decision tree learning, proposed by 
Breiman et al. [3]. This technique is useful not only for 
classification, but also for regression. The output of CART is 
determined by the type of the dependent variable: if the 
dependent variable is categorical, the resulting tree is a 
classification tree; on the other hand, if the dependent variable 
is numeric, the resulting tree is a regression one. Like other 
decision tree learning methods, CART algorithm follows a 
greedy approach, i.e. at each step a split on a node is chosen as 
to maximizing the purity of the resulting child nodes. The 
purity metrics can be deviance, entropy, or gini index. 

B. Interactive Decision Tree Learning 

One of the earliest works on interactive decision tree 
learning was proposed by Ankerst et al. [4]. In that work, the 
authors used a multidimensional visualization method on the 
training data to support the users in selecting the split point 
optimally. The visualization technique is pixel-oriented, similar 
to the Circle Segments method [5], in which each attribute 
value is mapped to a particular color based on the class of the 
data object having that attribute value. Different attributes‟ 
values are positioned in separate areas. For data objects with D 
attributes, a circle with D segments, each segment for one 
attribute, is used to represent them. In each segment, the data 
values of the respective attribute are positioned from the center 
of the circle to the outer border line-by-line, each line is 
orthogonal to the segment halving line. The human users can 
select an unused attribute to create a split formula on it to grow 
the decision tree. They can also remove an attribute from the 
current decision tree, to backtrack to a previous state. 

Another research on interactive decision tree learning is the 
PaintingClass by Teoh & Ma [6]. PaintingClass is a system for 
interactive construction, visualization and exploration of 
decision trees. Although the main objective of PaintingClass is 
to interactively construct decision trees, its other two 
objectives, visualization and exploration, are not less 
important. In fact, visualization and exploration features help 
PaintingClass‟s users have a better understanding of the 
underlying data, which in turn, make them be able to create 
small and accurate trees. Parallel coordinate visualization [7] is 
used in PaintingClass to display multi-dimensional objects in 
two-dimensional screen. 

BaobabView is another work in this category [8]. Its user 
interface design has some differences compared with the 
previous works. The three most important visual areas of it are 
decision tree main view, attribute view, and confusion matrix 
view. The decision tree main view displays the decision tree 
being built in a node-link diagram. The nodes are containers of 
data objects, while the links display the flow of data objects 
from parent nodes to child nodes. Sizes of nodes and links 
correspond to the number of data objects they contain. Details 
about attributes‟ values of a selected node are shown in the 
attribute view. These values are sorted based on some impurity 
metrics such as information gain [1], gain ratio [2], and gini 
gain [3] to help users in seeing the overall data value 
distribution, and using that information to create appropriate 
split formula for the selected node. The confusion matrix view 
displays the correct and incorrect classified objects, to give 
users instant feedback for their choices. 

C. Security Visualization 

Security visualization is a multi-disciplinary research field 
studying the use of information visualization techniques to 
solve computer security problems. In security visualization 
systems, human user is an integral part. The reason behind this 
tight integration is to combine the powerfully graphical 
capability of computers with the efficiently visual analysis of 
human to solve complex security problems. This combination 
creates new advantages that are difficult to achieve when either 
human analysis or computer processing is used individually. 
One of the notable advantages is to help human users 
overcome the information overload issue when working with 
security data, thereby letting them make informed decisions. 

In a research, Choi et al. used parallel coordinate method 
[7] to visualize network traffic for security administrators to 
detect large-scale internet attacks such as worms, DDoS, or 
network scanning activities [9]. Because each type of attacks 
has a particular visual pattern when visualized (the authors 
called them visual attack signatures), administrators can easily 
and quickly recognize them. After recognition, the 
administrators can further investigate the traffic data source in 
more detailed to see if the attacks are true or not. Although the 
final decision is made by human users, this visualization does 
enhance the decision making process by reducing the time and 
effort of administrators in analyzing high volume traffic data. 

Security visualization is not only helpful for security 
experts, but also for average end users. End users need simple 
but effective software interface to accomplish their tasks. But if 
the tasks are security – related, the interface is rarely simple. 
One such task is sharing files between users. Because there are 
many rules governing the final permission of the shared files or 
folders, the interface to configure permission is rather 
complicated. To make the file sharing task simple and secure at 
the same time, Heitzmann et al. developed a visually secure 
interface for NTFS file system [10]. This interface uses 
Treemap [11] to display hierarchical folder structure with 
different colors for different permission levels. Because colors 
can be effortlessly differentiated by human, it is easy for a user 
to know if moving/copying files/folders to new locations 
violates their original permissions or not. Another task 
deserves looking at is web browsing. This is a popular task and 
involves many security decisions to be made by the users 
during a browsing session. As a result, browser software 
vendors invest much effort in designing visual interface 
components to communicate with their users about security 
information, such as sites protected by SSL/TLS, cookies, 
possible phishing sites, etc. A more comprehensive survey 
about browsers‟ security designs is given in [12]. 

One similar research of this work was proposed by Dang 
and Dang [13]. In that research, the authors described a 
security visualization technique to analyze user inputs on 
HTML web forms. Multi – levels zooming is used to provide 
administrators different levels of detailed views, depends on 
their needs. Unlike traditional text display method, with this 
visualization technique, the authors demonstrated that 
thousands of user input data objects can be displayed and 
analyzed at a time. Furthermore, built-in interactions support 
security administrators in selecting and viewing specific subset 
data in more detailed. By working directly with user input data, 
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human administrators can have an overall understanding of the 
structure of the web application they are trying to protect as 
well as its environment (input forms, types of user, 
complexities of attacks, etc.). This understanding is not easily 
to obtain when they only work on the surface with automatic 
tools like IDS, IPS. The difference between that research and 
our work is that ours go a step further by providing a tool not 
only for analyzing user inputs, but also for developing attack 
detection rules in the form of decision trees. 

III. VISUALIZATION AND INTERACTION DESIGN 

A. Problem and Solution Specification 

In this section, we describe the format of user input data 
used by administrators to develop attack detection rules and 
details about the decision trees being built. Although web users 
can input data at any accessible location, these data objects 
must follow some predefined structures. These structures are 
determined in advance by web developers. As an example, the 
data objects to log in to an e-commerce website may contain 
fields such as “username” and “password”, while the data 
objects to sign up an account may contain more fields like 
“first name”, “last name”, “email”, “address”, “telephone 
number”, etc. However, the data objects for a specific action 
will have the same structure. For each action, because of the 
similarity of its data objects, a decision tree can be built on it to 
classify data objects into either normal or attack. 

More specifically, each user input record is considered as a 
separate data object. In general, if an action requires a data 
record with N input fields, the corresponding data object will 
have N attributes. In reality, administrators can choose to 
exclude some fields if they think these fields are not necessary 
for recognizing attacks. Each data object used in the tree 
building phase has a class label, which is either normal or 
abnormal. In the verification phase, the result tree is used to 
compute the class label for new data objects. In the beginning, 
all data objects are in the same node, root node, of the decision 
tree. The administrators then create a Boolean rule, with one 
unused attribute, for the root node. Data objects satisfy that rule 
are copied to a child node of the root, while the others are 
copied to the other child. This process continues until all data 
objects in a node having the same class, or when the 
percentage/number of data objects in one class is small/big 
enough. When a new object is put into the tree, it will follow 
the created rules until reaching a leave node whose label is 
assigned to the new node. 

B. Visualization and Interaction Design 

When building attack recognition decision tree, 
administrators selects a node which contains a collection of 
data objects, i.e. user input data records, enters a Boolean split 
expression for the selected node to spit its contained data 
objects into two child nodes. This process continues until the 
whole tree is built. To support the administrators in analyzing 
data and determining appropriate split expressions, we provide 
two supporting tasks, node analysis and tree analysis. The main 
tasks and their relationship are depicted in Fig. 1. 

 
Fig. 1. The main tasks provided by ivdt for security administrators. 

Node analysis: this task is used to inspect a selected node in 
details. The administrators can try different functions on any 
unused attributes to see how the data objects distribute. 
Usually, the pair of <attribute, function> that separates the 
data objects most should be chosen to create the split 
expression for the selected node. We provide a supported 
visual interface for this task, which is shown in Fig. 2. In 
Fig. 2, the pie chart displays the percentage of normal and 
abnormal data objects in the selected node. On the right of the 
pie chart are the distributions of data objects when custom 
functions are applied to unused attributes. The outputs of the 
custom functions are mapped to the X – coordinate, while the 
Y – coordinate is used to represent the number of data objects 
having the same X position, similar to the histogram 
presentation method. In Fig. 2, there are 2 distributions and it is 
easy to conclude that function 2 (segment (c) of Fig. 2) 
separates data objects better than function 1 (segment (b) of 
Fig. 2), and as a result, the administrators should use function 2 
as the split expression. 

 
Fig. 2. Visualization of a node and custom functions: (a) Distribution of data 

objects over the whole node; (b) & (c) Distribution of data objects as 

histogram of custom functions on selected unused attributes. 
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Fig. 3. Visualization of the attack detection decision tree. 

Split expression creation: when the administrators finish 
analyzing a node, they can create a Boolean split expression for 
that node. The general form of the split expression is S(ai), in 
which S is any Boolean function and ai is any unused attributes 
of the selected node. Because the split expression is a Boolean 
function, it maps the data objects into two groups. Data objects 
having the same output value are put into the same child node 
of the selected node. In this implementation, for no particular 
reason, the left child node is used to store data objects not 
satisfying the split expression and vice versa. 

Tree analysis: after a split expression is created for a 
selected node, that node expands into two child nodes. This 
results in a new tree. The tree reflects the overall progress the 
administrators have made in developing attack detection rules. 
In contrast with node analysis, which provides a tool for local 
optimization, tree analysis focuses more on the global goal, i.e. 
it answers the question: how good is the attack detection 
decision tree being built? It does so by displaying the whole 
tree using pre-attentive visual attributes [14] to communicate 
crucial information with administrators quickly and naturally. 
More specifically, color is used for data objects‟ class label and 
node size is used for number of data objects in a node. These 
two graphical attributes together with tree‟s depth give 
administrators an approximate estimation of the goodness of 
the tree. Based on this subjective estimation, administrators can 
adjust their split expression strategy for new child nodes, or 
start over with a new tree. A sample visual decision tree is 
displayed in Fig. 3. 

IV. IMPLEMENTATION 

To experiment with the proposed technique, we‟ve 
developed a prototype implementation of IVDT. The general 
architecture of the prototype is depicted in Fig. 4. The main 
components in the architecture are described below. 

The User input Database: this is used to store the input 
records from external users of the target web application. Each 
input record contains a collection of <name, value> pairs. In 
each pair, name is a fixed value predefined in advance by the 
web application developer while value is an actual value 
entered by the web application user. All input records have the 
same structure, i.e. having the same number of <name, value> 
pair and the same name elements. If an input record has a 
different structure, there is a high chance that it is the direct 
result of form modification attack [15]. 

 
Fig. 4. Main components of the prototype implementation of IVDT. 

The Data Mapping: the rules to retrieve data from the User 
input Database and map them into data objects suitable for 
processing are stored here. These rules specify the custom 
transformation for each input record field from its raw domain 
to another. For example, a textual input value of a field can be 
mapped into a numeric value for further processing. This 
component is also used to exclude fields that are not necessary 
in building decision tree. For example, fields like submit 
buttons always contain the same value for every input, so they 
do not provide any meaning in decision tree building and 
should be excluded at this step. 

The Data objects: these objects are created from the user 
input records after applied the rules specified in the Data 
Mapping component. Besides a collection of <name, value> 
pair, each data object contains a class label, which is either 
normal or abnormal. The class label can be set by security 
administrators manually or by IDSs automatically. 

The Dynamic expression execution: although the attributes 
contained in each data object can be of any type, e.g. Boolean, 
integer, real number, character string, etc. not all types are 
suitable for human analysis. In fact, we argue that choosing 
which data type/value to present an attribute is more or less a 
subjective decision. As an example, consider an attribute 
storing street addresses of buyers in an e-commerce web 
application, in our opinion, it will be more intuitive to analyze 
when these addresses are presented as distances to the target 
shop. But other people may prefer textual addresses to numeric 
distances and it is not unusual. To support different needs of 
different people, we develop the Dynamic expression 
execution component, which is responsible for converting 
attribute values from one domain to another at run time. The 
role of this component is somewhat similar to the role of Data 
Mapping component with one difference: the conversions here 
are done at run time. As a result, the transformation rules 
specified in Dynamic expression execution are not as complex 
as the ones specified in the Data Mapping component, but they 
can change data object attributes‟ values in real time. This real 
time support is important because it helps administrators in 
experimenting with different expressions to find the most 
suitable one to present an attribute. Once an expression is 
chosen, it is not difficult to turn it into a Boolean expression in 
order to create a split condition with that attribute. We use Java 
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Expression Library [16] to implement the Dynamic expression 
execution component. 

The Node visualization: this component is responsible for 
displaying each selected node in detail according to the 
interface depicted previously in Fig. 2. As shown in Fig. 2, the 
selected node is visualized as a pie chart presenting the 
percentages of data objects with normal or abnormal class 
label. In addition to the pie chart, some bar charts presenting 
the distribution of the output values achieved by applying the 
Dynamic expression execution on an attribute are also 
displayed. The library JFreeChart [17] is used to implement the 
Node visualization. 

The Tree visualization: this component is responsible for 
displaying the whole decision tree being built. The 
visualization method is depicted earlier in Fig. 3. As shown in 
Fig. 3, the relative size of each node corresponds to the number 
of data objects contained in that node. In turn, each node is 
visualized as a pie chart, similarly to the way the Node 
visualization does. Seeing the whole tree as it being built helps 
administrators in keeping track of their overall progress and 
also evaluating their current work result. We use JUNG (Java 
Universal Network/Graph Framework) [18] to organize tree 
elements, i.e. nodes, edges, layout, etc. as well as visualize it. 

V. EXPERIMENTS 

There are two main objectives in our experiments. The first 
one is to measure the effectiveness of the proposed technique 
in recognizing attacks on web applications. Because attack 
detection rules are created by human users, in combination 
with the support of IVDT, the measured result does not only 
depend on our technique, but also depend on the skills and 
experience of the users. Despite this fact, the way users 
perform their analysis to create detection rules is also affected 
by the functionality of the provided tool, so the effectiveness 
we obtain is related to the proposed technique to some extent. 
In particular, the effectiveness is evaluated as the true positive 
rate and true negative rate of the resulted visual decision tree in 
classifying user inputs. The second objective of our experiment 
is to evaluate the ease or difficulty users have when using 
IVDT to create attack detection rules. For this objective, we 
follow a qualitative approach by interviewing the users 
directly. 

A. Data Generation 

Without loss of generality, the data being analyzed is 
supposed to be sent to a sign up action. This action is common 
on many types of web applications such as e-commerce, 
bulletin board, online social network, etc. On the input data, 
there are some fields which are easy to define which values are 
normal or not. Some examples are fields used to store email 
address, date of birth, and phone number. On the other hand, it 
is more difficult to define the patterns of normal values for 
fields like first name, last name, and password. Because both 
types of input fields are contained this example, we can see if 
there is a difference on the way users working on them. 

The data objects in our experiments are generated 
automatically. They are labeled as either normal or abnormal. 
The abnormal data objects are malicious inputs on the sign up 
action. In particular, these malicious inputs are composed of 

SQL injection (SQLi) and Cross-site scripting (XSS) attacks. 
We choose SQLi and XSS because they are among the most 
popular attacks on web applications today [19], even though 
they existed long ago. The data generation processes are 
described below. 

Normal data generation: We use the tool GenerateData [20] 
to generate normal data. It supports many different types of 
data such as human data (first name, last name, email, 
company, etc.), geo data (street address, city, region, 
latitude/longitude), credit card, text, numeric, etc. We also 
create a database table to store the artificial generated data. 
Each record of the database table corresponds to a data object 
and each table field corresponds to an attribute of the 
respective data object. There is an additional field used to store 
the label of the data object. For data objects generated by the 
GenerateData tool, their labels are assigned normal value. 

Abnormal data generation: As described above, abnormal 
data are SQLi and XSS attacks, so they are generated by 
another tool. In the experiments, the attack values are created 
by the HackBar add-on for Mozilla Firefox browser [21]. The 
main purpose of this tool is to help web developers audit their 
code and look for security holes. The process we use to 
generate an abnormal data object is as follow: firstly, we use 
HackBar to generate an attack value; secondly, we select a 
random data object stored in the database table; and finally, we 
select a random field of the selected data object and replace its 
value with the generated attack value. 

The total data objects generated is 1000, in which 800 are 
normal and 200 are abnormal. We further divide them into two 
sets: training set and testing set. Each set has the same number 
of normal and abnormal data objects (i.e. 400 normal and 100 
abnormal objects in each set). 

B. Experiment Settings 

At this stage, our main objective is to get initial feedback 
about the proposed technique so that we can learn and improve 
them appropriately. Therefore, these experiments do not 
involve with many people. Instead, we invite three security 
practitioners, who are also members at our security lab, to try 
the prototype and give their opinion about it. These volunteer 
people all have adequate knowledge and skill about web 
application security. We record the action steps the security 
practitioners do during their assigned experiments, with their 
permission, to analyze further. 

Before the security practitioners do their assigned tasks, we 
give them a brief tutorial about the main components of our 
prototype and the decision tree classification method. Because 
the security practitioners already know about SQLi and XSS 
attacks, these information are not covered in our tutorial. But 
we do stress the use of the Dynamic expression execution 
component as well as the visual display to analyze and develop 
SQLi and XSS attack detection rules. At the end of the tutorial, 
we tell the volunteers to write attack detection rules as 
precisely and compactly as possible. 

C. Observed Action Steps 

The common steps that the security practitioners do 
according to our observation are: 
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At first, when there is only the root node, they look through 
all attributes of the data objects. They do not apply any 
transformation on any field, but just sees the field‟s values in 
their originals. Maybe doing so can give them an overview of 
the distribution of values of each attribute. 

After that, these people try some transformations on some 
attributes. We find that the most frequently used 
transformations they apply are length() and indexOf(), which 
return the length of an input string and the position of an input 
pattern in another input string respectively. Maybe these 
transformations are simple but effective enough to detect 
abnormal values, especially for human readable attributes like 
“first name” and “last name”. These human readable attributes 
are also chosen before other attributes as split attributes. 

Finally, for random attributes like password, it is more 
difficult for them to decide which value is normal and which 
one is not. As a result, the transformation rule they create on 
password field is rather complicated with many string 
functions combined together using Boolean functions such as 
AND and OR. Maybe foreseeing this complexity, split 
conditions for complex attributes are created near or at the 
leaves of the decision tree only. 

D. Results and Discussion 

After the security practitioners finish their assigned tasks, 
we ask them some questions to get their feedback on the 
usefulness or otherwise of the prototype. We also measure the 
detection performance of their result decision tree. Therefore, 
we divide our evaluation into two parts: quantitative result and 
qualitative result. 

 
Fig. 5. All of the result trees have this similar form: they are skew toward 

the normal side. 

Quantitative result: it takes around 15 minutes for the 
security practitioners to completely build attack detection rules 
in the form of a decision tree. Among the three people, one 
uses only 11 minutes to finish his task, while another uses 18 
minutes. The action steps they do follow similarly to the ones 
described in the previous section. The height of all the resulted 
decision tree are 5 and they are rather unbalanced toward the 
normal class. This can be explained by the approach the 
security practitioners use to create the split condition for each 

node, i.e. these conditions focus on the recognition of attack 
patterns. So, as soon as a data object attribute‟s value matches 
such patterns, this data object is considered abnormal and the 
process can terminate immediately. On the other hand, when a 
data object attribute‟s value does not match any attack pattern, 
the remaining attributes should still be checked. When testing 
with our generated dataset described previously, the average 
true positive rate is 95% (92/97) and the average true negative 
rate is 100% (403/403). The visualization of one of the resulted 
trees is displayed in Fig. 5. 

Qualitative result: we ask the security practitioners what 
they like or don‟t like about IVDT. Their responses are similar 
to what we expected. To summarize, all of them like the way 
we visualize each node (in Node analysis task) and the whole 
tree (in Tree analysis task) to support the tree building process. 
Two of them think the Dynamic expression execution feature is 
useful because it helps them in trying out different tests at run 
time, thereby being able to apply their relevant skills and 
knowledge directly. The volunteers also provide some useful 
feedbacks to improve IVDT. Two of them suggest that we 
should complement this tool with a feature to build trees 
automatically so that they can compare their results with the 
automatic result version, and/or they can use the automatic 
result as the base from which to make more refinements 
manually. One other important suggestion is that our tool 
should integrate with available web application IDSs or 
firewalls to reuse their large existing attack detection rules. 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have proposed and developed a visual 
interaction technique to support security administrators in 
building detection rules of attacks on web applications. The 
technique is based on decision tree learning and is enhanced 
further by adding data visualization and user interaction 
supports into the tree building process. Unlike traditional 
decision tree learning, our technique is user – driven. In other 
words, human users manually create classification rules, with 
necessary supports from the IVDT tool. Our proposed 
technique possesses some advantages over traditional decision 
tree learning. Some of the most important advantages include: 

Firstly, knowledge of users is applied directly. Because 
users directly analyze data objects and enter split conditions for 
each node, they can utilize their existing domain knowledge 
into the rules creation process. This can result in better 
classification trees. 

Secondly, users gain not only result, but also insight about 
the target web application and its environment. When 
analyzing data to create split conditions, users do not only 
create decision trees but also have an overview picture of the 
data objects, attributes, and values‟ distribution. This insight is 
difficult to achieve when using an automatic tool. 

Finally, classification rules can be made quite flexibly. 
Because classification rules are entered by human users, they 
can be quite flexible. For example, the data attributes used in 
split conditions can be of any type, not just numeric or nominal 
types; and custom functions used on data objects‟ attributes can 
produce many types of outcomes. 
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However, the proposed technique still has several issues 
that need to be addressed in the future. 

Firstly, due to some external constraints, we can invite only 
three security researchers in our lab to join the experiments. 
Because of the small number of participants, the experiment 
result may not be representative for the general security 
administrators. In future experiments, we plan to invite more 
people with different backgrounds to have more feedbacks. In 
addition to security experts, we also invite students majored in 
computer science to join the experiments. The purpose of 
having computer science students in future experiments is to 
consider the appropriateness of using this tool for security 
teaching. 

Secondly, because the number of data objects in the 
experiments is only average, we cannot evaluate the 
appropriateness of our using IVDT with very big data. For 
example, when there are many attributes in the training data 
objects, it is not trivial to select the first attribute to create the 
split condition. Similarly, when the decision tree being built is 
very big, displaying it on the computer screen at once in a 
meaningful way is also a difficult problem to which we will 
pay more attention in future works. 
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