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Abstract—This paper reports on how intelligent Greedy-Dual 

approaches based on supervised machine learning were used to 

improve the web proxy caching performance. The proposed 

intelligent Greedy-Dual approaches predict the significant web 

objects’ demand for web proxy caching using Naïve Bayes (NB), 

decision tree (C4.5), or support vector machine (SVM) classifiers. 

Accordingly, the proposed intelligent Greedy-Dual approaches 

effectively make the cache replacement decision based on the 

trained classifiers. The trace-driven simulation results indicated 

that in terms of byte hit ratio and/or hit ratio, the performance of 

each of the conventional Greedy-Dual-Size-Frequency (GDSF) 

and Greedy-Dual-Size (GDS) was noticeably enhanced by 

applying the proposed Greedy-Dual approaches on five real 

datasets. 
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I. INTRODUCTION 

Internet performance can be improved by several 
approaches, any one of which may not always be the best 
method, due to practical issues such as network infrastructure, 
environment, and cost of hardware [1]. The second and the 
most popular approach is a web caching technique [1], [2], 
which decreases the network load by providing the requested 
web content from local storage. In a similar manner to caching 
in the cache memory to enhance CPU performance, web 
caching stores some web objects in anticipation of future 
requests, to enhance Web-based systems. 

Basically, the implementation of web caching is done in 
three levels: client machine, proxy server and/or origin server. 
However, it is considered that the most significant caching 
approach is web proxy caching [2]-[7] which is used to save 
the networks‟ bandwidth, reduce Internet network traffic and 
decrease user-perceived latency. 

In some situations, the proxy cache buffer is full of the 
stored web objects and a cache replacement policy is executed 
to provide enough space for the new incoming objects.  The 
proxy cache replacement policy is responsible for removing 
unwanted web objects which may cause proxy cache pollution 
and poor performance. 

Greedy-Dual-Size-Frequency (GDSF) and Greedy-Dual-
Size (GDS) are two of the most commonly used web pages 
caching strategies, which are applied at proxy server. In GDS 

and GDSF, the replacement cache decision is made based on 
mathematical equations combining a few important features of 
the object. Higher priority is given by GDS and GDSF to small 
web objects compared with large objects. Thus, the hit ratio is 
maximized, but at the expense of the byte hit ratio. Since web 
users' interests change depending on rapid changes in a web 
environment, smart and adaptive approaches are required to 
contribute to the web caching and replacement decisions. 

II. SUMMARY OF CONTRIBUTIONS 

Least-Frequently-Used-Dynamic-Aging (LFU-DA) and 
Least-Recently-Used (LRU) were enhanced using supervised 
machine learning in previous works [7], [8], respectively. 
However, the hit ratio measure achieved by the intelligent LRU 
and LFU-DA approaches were not good enough compared to 
GDS and GDSF because neither the size nor the retrieving time 
of web pages was considered in these approaches. In this paper 
it is shown how intelligent machine learning classifiers are 
effectively utilized in the GDS and GDSF in order to obtain 
optimal and intelligent Greedy-Dual approaches that can 
perform better in terms of both bytes hit ratio and hit ratio. 

GDS is combined with intelligent machine learning 
classifiers to produce novel smart GDS caching methods (such 
as SVM-GDS, C4.5-GDS, and NB-GDS) with better 
performance. In the proposed intelligent GDS caching 
approaches, the frequency factor in the conventional GDS 
policy is replaced with the probability (computed by either the 
trained C4.5, SVM or NB classifier) of re-accessing the object 
soon. 

In addition, C4.5, SVM or NB is incorporated with GDSF 
to improve the low byte hit ratio. The subsequent proposed 
replacement approaches are called C4.5-GDSF, SVM-GDSF 
and NB-GDSF. In the proposed intelligent GDSF approaches, 
the value of the object class (either one or zero) predicted by 
the trained classifier is added in the conventional GDSF in 
order to assign a higher priority to the web objects that are 
likely to be revisited soon. 

The relative performances of the proposed intelligent 
Greedy-Dual approaches are then comprehensively discussed 
and compared with the most common and more relevant 
intelligent cache replacement methods. 
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The remainder of this paper is structured as follows. 
Section III describes the background of web proxy replacement 
and caching. Supervised machine learning is also presented 
briefly in subsection B while the current intelligent web cache 
replacement techniques are summarized in subsection C. 
Section IV presents the methodology of the proposed 
intelligent Greedy-Dual algorithms.  The proposed approaches 
are evaluated and compared with other conventional and 
intelligent cache replacement techniques in Section V. Finally, 
Section VI concludes the work proposed in this study and 
suggests future work arising from this paper. 

III. BACKGROUND AND RELATED WORK 

A. Web Proxy Cache Replacement 

The web proxy caching is a useful technique that plays an 
essential role in improving the performance of Web-based 
systems in terms of minimizing the utilization of network 
bandwidth, decreasing user-perceived delays and reducing 
loads on the original servers. 

Three popular aspects have high impact on web proxy 
caching, which are cache consistency, cache pre-fetching, and 
cache replacement [1], [3], [4]. However, the powerful cache 
replacement method is essential and can make the greatest 
contribution in enhancing the caching performance [5]-[10]. 

When the proxy cache becomes full of web objects, a 
replacement strategy is basically used to manipulate the 
contents of the cache to provide sufficient space for incoming 
objects.  The primary objective of the ideal cache replacement 
policy is to eliminate the undesired objects, to provide the best 
utilization of the proxy cache. Hence, cache hit rates can be 
improved, and loads on the server can be reduced. 

A Greedy-Dual-Size (GDS) policy is suggested by [11] to 
lessen the cache pollution issues faced by the SIZE policy. In 
addition to the size factor, the cost of retrieving a web object 
from the server and the aging factor are combined with the key 
value assigned by GDS for each object available in the proxy 
cache. As the proxy cache is fully occupied, the web object that 
has the lowest key value is removed to provide enough place to 
the new demanded objects. The GDS policy uses (1) to 
computes K(g), which represents the caching priority of object 
g visited by a web user. 

( )
( )

( )

C g
K g L

S g
 

             (1) 

Where S(g) is the size of g; C(g) is the fetching cost of g 
from its origin server; and L is an aging factor, which has the 
zero as the initial value and is then adjusted to the caching 
priority of the last replaced object. 

When object g is requested again, K(g) is modified based 
on the updated L value. Hence, the objects visited recently 
have larger caching priority values. The GDS policy obtains a 
much better hit ratio compared with other conventional 
replacement methods.  However, the GDS approach still 
suffers from a low byte hit ratio [11]. Therefore, [12] suggested 

an improvement on GDS by integrating the visit frequency 
F(g) into the replacement decision, to produce Greedy-Dual-
Size-Frequency (GDSF), as shown in (2). GDSF accomplishes 
a higher hit ratio compared to other cache replacement 
methods. However, although GDSF obtains a higher byte hit 
ratio than GDS, GDSF still performs minimal byte hit ratio 
compared to the other conventional replacement methods [12]. 

( )
( ) ( ) *

( )

C g
K g L F g

S g
 

             (2) 

B. Supervised Machine Learning 

The supervised learning algorithm works on the training 
dataset to generate a classifier that has the ability to predicting 
the correct class for the known dataset (testing dataset). This 
section concentrates on three popular machine learning 
algorithms: decision tree (C4.5), support vector machine 
(SVM) and Naïve Bayes classifier (NB), which have been 
successfully applied in many applications [13]-[17]. 

In the decision tree, a feature in the training instance is 
represented by a node, while each tree branch has a value, 
which can be predicted by that node. The C4.5 developed by 
[17] is the most commonly used algorithm to generate a 
decision tree for classification purposes. The C4.5 is 
constructed based on a top-down recursive approach to 
generate the decision tree. All of the training instances are 
initially at the tree root. The C4.5 then uses an impurity 
function in order to split the training instances recursively. The 
partitioning process is then repeated until all instances for a 
given node belong to the same class. 

A support vector machine, which is a discriminative model, 
aims to achieve an optimal hyperplane which categorizes new 
instances by generating the maximal likely distance between 
the separating hyperplane and the instances in order to decrease 
the upper bound on the predictable generalization error. In the 
SVM training, support vectors closer to the separating 
hyperplane are obtained from the dataset to represent the most 
valuable instances used for classification. In addition to linear 
classification, SVMs can be used to solve other non-linear 
classification problems by selecting the appropriate kernel 
function to convert the instances into high-dimensional spaces. 

One of the simplest Bayesian networks is the Naive Bayes 
network (NB), which is represented as a directed acyclic graph 
in which the class label is represented by the single parent and 
the features are represented by some children. NB supposes 
that no correlation exists between the features and that, given 
the class label, all the features are conditionally independent. 

The conditional probabilities Pr( | )
i i j

A a C c   and the prior 

probabilities Pr( )
j

C c  are computed in the training phase.  

Formula (3) is then used in order to predict the class of a test 
example. 

/ /

1

arg max Pr( ) Pr( | )
j

A

j i i j
c i

c C c A a C c


   
           (3)
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TABLE I.  SUMMARY OF THE EXISTING INTELLIGENT WEB CACHE REPLACEMENT TECHNIQUES 

Machine Learning Used Existing Works Based on 
Cache 

Location 
Data Used for Evaluation 

SVM 
SVM-DA [7] LFU-DA Proxy  The IRCache network‟s proxy logs files 

SVM-LRU [8] LRU Proxy  The IRCache network‟s proxy logs files 

Decision Tree 

C4.5-DA [7] LFU-DA Proxy  The IRCache network‟s proxy logs files 

C4.5-LRU [8] LRU Proxy  The IRCache network‟s proxy logs files 

 J48-C-LRU  [22] LRU Proxy  The IRCache network‟s proxy logs files 

CART, MARS, RF and TN in web caching [23] LRU 
Client and 
Sever 

- Cunha of Boston University „s 

Web client traces  

- E-Learning @UTM Web server 

Naïve Bayes Classifier 
NB-DA [7] LFU-DA Proxy  The IRCache network‟s proxy logs files 

NB-LRU [8] LRU Proxy  The IRCache network‟s proxy logs files 

ANN 

NNPCR  [24]   and NNPCR-2 [6] LFU-DA Proxy  The IRCache network‟s proxy logs files 

BP and PSO in Web caching [25] None Server 
Cunha of Boston University „s 

Web client traces 

LRU-C [9] LRU Server 

Finnish University and Research Network 
access‟s logs file  

 

ANFIS ICWCS [26] LRU Client 
Cunha of Boston University „s 

Web client traces  

Logistic Regression 

 LRU-C and LRU-M [27] LRU Proxy  
The IRCache network‟s proxy logs files just for 
one day  

Logistic regression in an adaptive web cache [28] None   Server Server logs files‟s Internet Traffic Archive  

C. Related Works on Intelligent Web Cache Replacement 

Techniques 

Several intelligent methods have been explored as 
alternative solutions to enhance the performance of traditional 
approaches of proxy cache replacement. The intelligent proxy 
cache replacement methods have been developed by using 
supervised machine learning techniques (see Table I), fuzzy 
systems [18], or evolutionary algorithms [19]-[21]. The 
existing intelligent web cache replacement techniques based on 
the supervised machine learning are considered as the most 
commonly used, effective and adaptive approaches, as 
summarized in Table I. 

By examining the existing works cited in Table I, it can be 
concluded that two intelligent replacement paradigms are 
dominant in the existing intelligent web cache replacement 
techniques. A supervised machine learning technique is 
utilized independently in the proxy cache replacement or 
incorporated with one of the conventional replacement policies 
such as LFU-DA or LRU. The object size and cost are not 
considered in the replacement decision with these paradigms. 

Unlike the previous works, the proposed intelligent 
Greedy-Dual approaches can remarkably enhance the byte hit 
ratio of the conventional GDSF and GDS. Besides, they utilize 
the advantages of GDS and GDSF in terms of high hit ratio. In 
other words, intelligent machine learning classifiers are 
effectively utilized into the GDS and GDSF in order to obtain 
optimal intelligent Greedy-Dual approaches that can achieve 
good performance in both the hit ratio and the byte hit ratio. 

IV. METHODOLOGY 

A methodology for enhancing web proxy cache 
replacement using intelligent Greedy-Dual approaches is 
explained in this section.  The methodology involves two 
phases: training of supervised machine learning classifiers, and 
then integrating the trained classifiers into the web proxy cache 
replacement. 

A. Training of Supervised Machine Learning Classifiers 

In order to effectively predict the desired web object, C4.5, 
SVM and NB classifiers are trained with training data prepared 
based on users‟ requests recorded in the web proxy logs file. 
Some features of the training dataset are extracted from the 
web proxy logs file immediately, while other features are 
prepared using equations, as shown in Table II. The target 
output for each request is also prepared from the proxy logs 
file, based on the forward-looking sliding window (SWL) as 
shown in (4). 

  

{

                                                                

                                                                                                
(4) 

As can be observed, the input features are based on the past 
information of objects requests within the backward-looking 
sliding window to expect whether these objects would be 
revisited soon or not within the forward-looking sliding 
window. 
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TABLE II.  THE FEATURES PREPARATION OF TRAINING DATASET 

Feature 

Name 
Description How to Prepare 

SWL-based 

Recency 

Recency of 

visiting a 

object withing 
backward-

looking sliding 

window 

( , ) ,

1

,

Max SWL T if object g

was requested beforex

SWL otherwise

















 

where T is the time in seconds since 

object g was last request , and SWL is 
sliding window length. 

Frequency 

Visits 
Frequency of  

a object 

Number of requests for a web object in 

proxy logs file 

SWL-based 

Frequency 

Visits 

Frequency of  

a object within 
backward-

looking sliding 

window 

1 ,
3

1

3
1 ,

x if T SWL

i

x
i otherwise











  




 

Retrieval 

time 

fetching time 

of a object in 
milliseconds 

extracted from elapsed time field of log 

entry in the proxy logs file 

Size 
Size of object 

in bytes 

extracted from size field of log entry in the 

proxy logs file 

Type 
Type of  web 

object 

1 for HTML, 2 for image, 3 for audio, 4 

for video, 5 for application and zero for 
others. 

When the proxy dataset is preprocessed well, C4.5, SVM 
and NB can be trained using the prepared dataset for web 
object classification. The training phase aims to train C4.5, 
SVM and NB classifiers to predict the web object class 
requested by the user, either as objects to be revisited soon or 
not. Consequently, the classification information is utilized 
with the cache replacement decision to enhance the web proxy 
caching performance. 

B. Proposed Intelligent Greedy-Dual Approaches 

As NB, C4.5 and SVM are correctly trained to classify 
proxy cache contents, as discussed earlier; a web proxy cache 
replacement strategy can utilize NB, C4.5 or SVM classifiers 
for managing the contents of the web proxy cache. As shown 
in Fig. 1, when a web user visits object g, the cache manager 
searches for object g in the proxy cache. Whether a cache hit or 
miss has occurred, intelligent Greedy-Dual approaches are 
used to compute or update the caching priority, K(g), of g.  The 
desired features of g, as shown in Table II, are collected and 
utilized as inputs for the classification algorithm that can 
classify object g as an object that would be revisited again or 
not. Thus, the classification decision is incorporated into the 
GDS or GDSF cache replacement approach for updating the 
priority of g. Then, g is reordered and located depending on the 
new priority of g in the cache list. Consequently, the proposed 
intelligent GDS and GDSF can identify and remove the 
unwanted web objects with the lowest priority for replacement. 

In the proposed intelligent GDS approaches, classification 
information produced by C4.5, SVM or NB classifier is 
combined with the conventional GDS to enhance the byte hit 
ratio. The suggested intelligent GDS approaches are so-called 
NB-GDS, C4.5-GDS and SVM-GDS. In the proposed 
intelligent GDS approaches, a NB, C4.5 or SVM classifier is 
used to compute the probability, Pr(g), of revisiting object g in 
the near future. Each time a user visits an object g, the 

accumulated Pr(g), i.e.,  ( ) ( )W g Pr g , is combined with 

the caching priority K(g) using (5). 

( )
( ) ( ) *

( )

C g
K g L W g

S g
 

             (5) 

In addition to the intelligent GDS, the traditional GDSF is 
extended based on a NB, C4.5 or SVM classifier to enhance 
the low byte hit ratio. Therefore, the proposed NB-GDSF, 
C4.5-GDSF and SVM-GDSF are produced as alternative 
approaches to the traditional GDSF web proxy cache 
replacement method. 

In the proposed intelligent GDSF approaches, the trained 
NB, C4.5 or SVM classifier is applied for the prediction of the 
web objects‟ class (one or zero) requested by the web user. The 
class label is then included as an additional weight into GDSF 
to provide higher priority to the preferred objects, which will 
be revisited sometime in future even if the preferred objects are 
large. When a web user visits g, the intelligent GDSF uses (6) 
to assign the caching priority, K(g), of object g. Hence, based 
on its priority, g is relocated in the proxy cache. 

( )
( ) ( ) * ( )

( )

C g
K g L F g W g

S g
  

            (6) 

Where ( )W g  is either one or zero, which represents the 

class of object g obtained using the NB, C4.5 or SVM 
classifier. 

The rationale behind the proposed intelligent Greedy-Dual 
approaches is explained as follows. The conventional GDS and 
GDSF give greater priority to small web objects, which are 
removed first from the proxy cache. Thus, the hit ratio is 
maximized by the conventional GDS and GDSF but at the 
expense of the byte hit ratio. Instead of that, the suggested 
intelligent Greedy-Dual approaches can predict either the class 
value or probability of the preferred objects, which would be 
re-accessed soon using SVM, NB and C4.5 classifiers. 
Accordingly, the class information is successfully integrated 
with the storing priority of the web object. In other words, the 
priority values of those preferred objects can be enhanced 
using a SVM, NB or C4.5 classifier, regardless of their size 
and visits frequency. Thus, the proposed intelligent Greedy-
Dual approaches can outstandingly enhance the byte hit ratio of 
the conventional GDS and GDSF. In addition, the superior hit 
ratio of the conventional GDS and GDSF can be maintained in 
the intelligent Greedy-Dual approaches. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 8, 2018 

80 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 1. A methodology for enhancing web proxy cache replacement using intelligent greedy-dual approaches. 
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V. RESULTS AND DISCUSSION 

A. Data Collection 

The proxy log files used in this study were obtained from 
five proxy servers (BO2, NY, UC, SV and SD) from the 
IRCache network [29] that are located in the United States over 
a period of fifteen days. C4.5, SVM and NB classifiers were 
trained based on the data collected in the first day, while the 
remaining data of the two weeks were used to evaluate the 
suggested intelligent Greedy-Dual method against existing 
works. 

B. Improvement Ratio of Hit and Byte Hit Ratio 

In this study, a WebTraff [30] simulator was adjusted to 
simulate and evaluate the effectiveness of the performance of 
the proposed intelligent Greedy-Dual approaches against 
various existing web cache replacement policies. 

The most popular measures used to verify and evaluate the 
performance of proxy cache replacement are hit ratio (HR) and 
byte hit ratio (BHR), which are related with the number of 
user‟s requests and bytes served by the proxy cache instead of 
the original server. Due to space limitations, (7) is used to 
calculate the average improvement ratios (IRs) of conventional 
method (CM) in terms of the HR and BHR obtained by the 
proposed method (PM), i.e., the intelligent GDS and GDSF 
against conventional GDS and GDSF. 

( )
100 (%)

PM CM
IR

CM


 

            (7)

 

For the five datasets, Table III summarizes the average IRs 
performed by intelligent GDS approaches over conventional 
GDS for each particular cache size. The averages IRs were 
significantly influenced when the proxy cache size increased. 
More particularly, the impact of the performance of a 
replacement policy for the small cache was noticed clearly, 
since the replacement process occurred frequently. 

For HR, the results show that SVM-GDS, NB-GDS and 
C4.5-GDS improved the HR of GDS with average IRs by up to 
17.42%, 22.45% and 18.79% respectively, as shown in 
Table III. For the average IRs of the BHR, the BHR of the 
GDS was significantly enhanced by SVM-GDS, NB-GDS and 
C4.5-GDS, by up to 57.61%, 229.14% and 85.65%, 
respectively. This was mainly due to the capability of 
intelligent GDS approaches to intelligently remove the correct 
objects from the proxy cache. By contrast, the low BHR of the 
conventional GDS was expected, due to the GDS‟s weighting 
toward smaller objects, even if the smaller objects are not 
preferred. 

From Table III, it can also be seen that the HR of C4.5-
GDS was almost the same as the HR of SVM-GDS, but 
slightly lower than that of NB-GDS. In terms of the BHR, NB-
GDS accomplished the best BHR, while SVM-GDS attained 
the worst BHR compared to the BHRs of NB-GDS and C4.5-
GDS. This was due to the fact that NB-GDS gave more 

accurate probabilities or scores to the preferred objects, either 
small or large objects. This contributed greatly to obtaining a 
good HR and a much better BHR from NB-GDS than from the 
others. 

The average IRs achieved by the intelligent GDSF methods 
are also presented in Table III. SVM-GDSF, NB-GDSF and 
C4.5-GDSF accomplished good HRs but these were slightly 
inferior to the HR of the conventional GDSF. In the worst case, 
SVM-GDSF, NB-GDSF and C4.5- GDSF lost 7.29%, 9.43% 
and 7.4% respectively from the HR of GDSF. However, the 
BHR of GDSF was significantly enhanced by SVM-GDSF, 
GDSF-NB and C4.5-GDSF and increased by 407.49%, 
380.55%, and 308.08%, respectively. This enhancement was 
obtained because the GDSF tends to cache many of the small 
objects in the proxy cache to increase the HR, but at the 
expense of BHR. 

Table III shows also that C4.5-GDSF and SVM-GDSF 
achieved slightly higher HRs than the HR of NB-GDSF, while 
NB-GDSF and SVM-GDSF achieved better BHRs compared 
to the BHR of C4.5-GDSF. This meant that the best balance 
between the HR and BHR was achieved by SVM-GDSF. 

C. Overall Comparison and Discussion 

As shown in the previous section, the proposed NB-GDS 
and SVM-GDSF achieved a more competitive HR and better 
BHR. Thus, NB-GDS and SVM-GDSF were selected to be 
used in the overall comparison. The proposed NB-GDS and 
SVM-GDSF approaches were compared with the most 
common cache replacement methods used in squid software 
such as LRU, GD, GDSF and LFU-DA [24], [6]. In addition, 
NB-GDS and SVM-GDSF were compared with other existing 
intelligent proxy cache replacement methods, such as NNPCR-
2 [6], SVM-LRU [8], and SVM-DA [7]. 

In terms of the HR, Fig. 2 clearly indicates that SVM-LRU, 
NB-GDS and SVM-DA improved the performance of LRU, 
GDS and LFU-DA, respectively on the five proxy datasets. 
Conversely, the HR of SVM-GDSF was comparatively or 
somewhat worse than the HR of GDSF. Fig. 2 also 
demonstrates that the HRs of NB-GDS, SVM-GDSF and 
SVM-DA were much better than the HR of NNPCR-2, while 
the HR of SVM-LRU was slightly better than that of NNPCR-
2 for most of the proxy datasets. From Fig. 2, it can be 
concluded that the best HR was achieved by NB-GDS, while 
the worst HR was given by LRU on all datasets. 

In terms of BHR, Fig. 3 demonstrates that, for all proxy 
datasets, the BHR obtained by GDS and GDSF was much 
lower than that achieved by LFU-DA, LRU and NNPCR-2. 
This was expected, since LFU-DA, LRU and NNPCR-2 
policies removed objects regardless of their sizes. Furthermore, 
the BHRs of SVM-DA and SVM-LRU were better than those 
of LFU-DA, LRU and NNPCR-2 in all proxy datasets with 
different cache sizes. 

It can also be noticed from Fig. 2 and 3 that although GDS 
and GDSF had a better a performance for the HR obtained 
compared to the others, it can clearly be seen that the BHRs of 
GDS and GDSF were the worst among all the methods. This is 
because GDS and GDSF prefer to cache the small and recent 
objects. 
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TABLE III.  THE AVERAGE IRS ACHIEVED BY INTELLIGENT GDS AND GDSF OVER GDS AND GDSF 

Cache Size 

(MB) 

Average IR of HR and BHR Over GDS and GDSF (%) 

SVM-GDS SVM-GDSF NB-GDS NB-GDSF C4.5-GDS C4.5-GDSF 

HR BHR HR BHR HR BHR HR BHR HR BHR HR BHR 

1 17.42 26.23 -1.59 16.42 22.45 46.47 -0.86 16.85 18.79 33.96 -1.03 16.34 

2 15.87 26.37 -3.13 27.31 18.96 51.38 -4.55 105.22 17.05 35.21 -2.46 20.43 

4 10.56 23.95 -3.88 45.61 15.21 96.64 -10.81 255.28 14.52 28.70 -6.07 32.85 

8 13.15 41.09 -5.37 155.77 15.25 229.14 -6.97 278.46 13.97 56 -3.27 125.2 

16 11.05 48.47 -6.01 123.57 12.92 179.98 -6.47 147.21 11.6 85.65 -4.35 91.98 

32 10.09 54.44 -6.50 94.15 11.31 125.3 -7.76 96.59 10.45 81.01 -5.99 76.7 

64 9.74 49.08 -6.39 407.49 10.7 202.07 -7.79 380.55 9.95 54.82 -6.18 308.08 

128 7.08 57.61 -7.28 125.95 8.77 105.77 -9.43 96.45 7.29 73.1 -7.4 93.04 

256 5.11 50.59 -6.96 84.55 7.65 88.36 -8.79 65.61 5.32 59.39 -6.22 54.34 

512 2.96 44.78 -5.32 61.66 5.58 75 -8.18 38.09 3.09 59.61 -4.88 34.42 

1024 1.95 35.22 -4.13 40.8 5.32 71.87 -6.44 25.29 2.23 51.34 -2.94 19.38 

2048 0.64 34.71 -2.50 25.59 4.47 55.11 -5.11 17.18 0.87 54.97 -2.63 8.15 

4096 0.28 28.75 -2.49 9.16 4.41 30.82 -4.08 10.23 0.40 29.89 -1.61 4.81 

8192 0.15 8.17 -0.37 2.54 3.86 8.66 -2.06 2.40 0.20 8.42 -0.69 1.95 

16384 0.03 1.27 -0.05 1.16 3.89 1.56 -0.25 0.24 0.05 1.58 -0.20 0.12 

32768 0 0.56 0 0.02 3.87 0.96 0 0.33 0 0.94 -0.02 0.28 

Fig. 2 and 3 show that both SVM-GDSF and NB-GDS 
were significantly improved in terms of BHRs achieved over 
GDSF and GDS, respectively. It can be concluded that the 
proposed NB-GDS and SVM-GDSF achieved outstanding HRs 
and competitive BHRs for most of the proxy datasets. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, intelligent Greedy-Dual approaches have 
been suggested to obtain optimal web proxy cache replacement 
approaches that can achieve good performance in both HR and 
BHR. To improve the lower byte hit ratios of the conventional 
GDS and GDSF policies, intelligent machine learning 
classifiers were combined with these policies to produce novel 
intelligent GDS and GDSF caching approaches with better 
performance.  The trace-driven simulation results depicted that 
the intelligent Greedy-Dual approaches noticeably enhanced 
the performance of the traditional GDS in terms of byte hit 
ratio and hit ratio. The averages of the IRs of the BHRs 
obtained by SVM-GDS, NB-GDS and C4.5-GDS over GDS 
increased by 57.61%, 229.14% and 85.65%, respectively, 
while the average IRs of the HR increased by 17.42%, 22.45% 
and 18.79%, respectively. Moreover, the intelligent GDSF 
approaches significantly improved the performance in terms of 

the byte hit ratio of GDSF. The average IRs of the BHRs of 
SVM-GDSF, NB-GDSF, and C4.5-GDSF were many times 
greater than the BHRs of GDSF, and increased by 407.49%, 
380.55%, and 308.08%, respectively. When the proposed 
intelligent Greedy-Dual approaches were compared with 
conventional and other intelligent replacement approaches, it 
was observed that the proposed NB-GDS achieved the best 
HR. Furthermore, BHRs of SVM-GDSF and NB-GDS were 
competitive with the BHRs of LRU and LFU-DA for most 
proxy datasets. 

The proposed intelligent Greedy-Dual approaches can be 
implemented in real environments such as organizations or 
universities. For example, the proposed approaches can be 
implemented on proxy servers of departments, faculties and 
campus, to reduce the response time and save the network 
bandwidth of server. The proposed approaches do not consider 
multiple caching proxies, which cooperate and share their 
caches. In addition, regular retraining of classifiers is expected 
to improve the adaptability and efficiency of the proposed 
intelligent caching approaches. Eventually, instead of stand-
alone web caching, intelligent Greedy-Dual approaches can be 
effectively integrated with a prefetching policy in order to 
improve the web performance. 
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Fig. 2. Comparison of hit ratio between the conventional and intelligent web proxy caching approaches. 
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Fig. 3. Comparison of byte hit ratio between the conventional and intelligent web proxy caching. 
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