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Abstract—Big data processing requires extremely powerful 

and large computing setup. This puts bottleneck not only on 

processing infrastructure but also many researchers don’t get the 

freedom to analyze large datasets. This paper thus analyzes the 

processing of the large amount of data from machine learnt 

models that are built on the smaller sets of data samples. This 

work analyzes more than 40 GB data by testing different 

strategies of reducing the processed data without losing and 

compromising on the detection and model learning in machine 

learning. Many alternatives are analyzed and it is observed that 

50% reduction does not drastically harm the machine learning 

model performance. On average, in SVM only 3.6%, and in 

Random Forest, only 1.8% performance is reduced, if only 50% 

data is used. The 50% reduction in instances means that in most 

cases, the data will fit in the RAM and the processing times will 

be considerably reduced, benefitting in execution times and or 

resources. From the incremental training and testing 

experiments, it is found that in special cases, smaller sub-sampled 

data can be used for model generation in machine learning 

problems. This is useful in cases, where there are either 

limitations on hardware or one has to select among many 

available machine learning algorithms. 
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I. INTRODUCTION 

The immense increase in technology sophistication these 
days and the relevant exponential increase of data being 
circulated and produced has resulted into the fact that ordinary 
data has been turned into big data. As explained by the name, 
big data refers to the data type that is massive in its size, 
formats that it holds, and requires high velocity servers for 
fetching it at required time [1]. Big data constitutes of 
variability, volume and velocity of data that needs to be 
accessed. This data is usually stored in large servers and is 
accessed only when required [2]. This big data is then used for 
carrying out ordinary operations of organization like decision 
making, sorting and other business related tasks [3]. However, 
for increasing efficiency and accuracy, a tradeoff between 
efficiency and size of application is crucial [4]. Common 
example of this is global positioning system, facial recognition 
cameras and connected automated vehicles. The efficiency of 
these applications can be enhanced through the provision of 
increased data sets for model learning. On the other hand, this 
is not feasible as large data sets require high storage space 
which in turn, becomes hard to be processed. For this purpose, 
it is required that a mechanism is built that allows sub sets of 
big data to hold similar knowledge and information as that of 
original data [5]. 

Big data has posed some serious risks to the data 
computation as well which needs to be addressed in order to 
ensure that the end user is protected in the end. For this 
purpose, usually some parameters are defined which ensure 
big data quality and information quality [6]. These parameters 
include, Syntactical Validity, Appropriate Identity association, 
appropriate attribute association, accuracy, precision, temporal 
applicability, theoretical relevancy, practical relevancy, 
currency, completeness, controls and audibility [6]. Other than 
this, management of servers and data for access control, 
privileges, sortation and security create other issues [7]. By 
2002, digital devices were more than 92% with 5 Exabyte of 
data [8]. This number has been increasing since then and the 
problem has been evolving gradually. Today, big data is about 
$46.4 billion industry [8], meaning that, despite the problems 
of data handling, interest of users is growing over years. When 
it comes to data mining, this task becomes extremely complex 
when there exist hundreds of groups that are classified on the 
basis of minor differences, increasing work load and 
compilation time [8]. 

Apart from its never ending applications, big data is 
becoming a challenging concept for data mining, machine 
learning, information fusion, computational intelligence, 
social networks and the semantic web, etc. [9]. In this regards, 
issues of data processing, data use for pattern mining, data 
storage, user behavior analysis, data visualization and data 
tracking have attracted considerable attention [10]. 

This havoc of solution search for big assembly issues has 
been increased due to the fact that technologies like machine 
learning, computational intelligence and social networks are 
using libraries for data processing. These libraries are in turn 
increasing in size as the application scope is increasing. Due 
to which, solutions for simplicity of big data handling are 
continually researched and examined. These solutions include, 
data sampling, data condensation, density based approaches, 
incremental learning, divide and conquer, grid based 
approaches, distributed computing and others [8]. 

From processing perspectives, the Big data sampling has 
the biggest issue of complexity, computational burden and 
inefficiency to complete the task properly [11]. Sampling 
effort is the number of data sets that can be added per sample. 
It is assumed generally that sampling effort data sets richness 
is weak only if sampling bias is done successfully through 
estimation [12]. Selection bias, in this regards, can be 
computed and determined successfully though inverse 
sampling procedure, in which information from external 
resources is used, or by digital integration technique, in which 
big data is combined with independent probability sample 
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[13]. Size of a sample is extremely critical and plays an 
important role in determining accuracy of the system [14]. For 
this purpose, as a solution to big data sampling issues, many 
algorithms have been presented like Zig Zag process [15], 
non-probability sampling [13], inverse sampling, cluster based 
sampling [16]. 

Machine learning is a part of data analytics that learns 
from the available data to predict, decide and take insights 
[16]. Based upon statistics, it extracts trends from data and 
then computes it for supervised or unsupervised learning 
techniques. In machine learning, machines are made to 
understand information and made capable to derive some 
meaning out of them. This learning is done through analogies, 
connectionist, strategies, discovery, problem solving, search, 
and match by parameter adjustment. The ability of any 
machine to learn depends upon the amount of information it 
can handle and the limit to which it can process [4]. Machine 
learning is considered as the type of automation that gets 
enhanced as the amount of input data increases. However, 
algorithms being used for computation are usually 
conventional that are designed to solve simple data sets, 
creating a computational challenges. For example, for big data 
these are memory and processing for training periods, 
unstructured data formats, fast moving data, low scalability of 
algorithms, unbalanced distribution of input data sets, and 
unlabeled data [17]. 

Convolutional Neural Networks (CNNs) have been used 
for accurate modeling of classification data [18], [41], 
especially image and text data [42]. However, for large 
datasets, the CNNs needs tremendous amount of processing 
power. Also, the trend has moved from the traditional feature 
extraction to autonomous feature extraction as in [19], [20]. 
However, the main problem is still not thoroughly 
investigated, which is the increase of features and data 
instances lead to the curse of dimensionality and the 
tremendous amount of processing power needed. The curse of 
dimensionality definitely affects the final model performance. 
Similarly the continuous increase of data instances forces the 
machine learning models to be re-calculated and re-evaluated. 
This thus puts tremendous reliance on the powerful computing 
machines and resources. However, such facilities are still not 
available to masses and many research institutes. 

This article thus investigates the reduction of data 
instances for classification performance and machine learning 
scenarios. For experimental evaluation of the proposed 
architecture, this article uses the dataset from the NDPI 
videos. Further details are available in [21]. NDPI is huge 
dataset and comprises of more than 40 Gigabytes of videos 
data. For experimental analysis, the data is divided into three 
classes. These are: Un-acceptable, Acceptable, and Flagged. 
Though the paper is based on the generic concept of data 
sampling and performance analysis, however, the article uses 
the data from image based filtering. It has three main reasons. 
First is that the data is well organized into three classes, which 
is a good representative problem for machine learning 
algorithms? Secondly, though the data is image, in the feature 
form, the data is converted to numerical values. Thus the data 
is equated to other datasets and similar machine learning 
problems. Thirdly, the data is huge, more than 40 Gigabytes in 

size. Therefore, it is assumed that the data that is processed in 
this article is big data. Therefore, the results can be extended 
to other datasets of similar nature. 

Our previous work [1] about the role of sampling in big 
data analysis motivated us for further investigation about 
effective approaches for big data analysis. Based on the 
dataset processed in this article, there is considerable work 
available in the state of the art. The articles [22]-[25] present 
and models such scenarios and applications.. The work in [22] 
fuses AlexNet [20] and GoogLeNet [26] and for performance 
enhancements. The work in [24] takes advantage of colors 
transformations. The paper [27] presents an evidence 
combination. The work of [28] takes advantage of adaptive 
sampling approach for filtering. The paper [29] demonstrates 
websites filtering analysis, and [30] combines key-frame 
analysis. The [31] and [32] use visual features for media 
access and filtering. The articles [33]-[36] are based on 
content based image retrieval. 

The rest of the paper is organized as follow. Section II 
presents some background about the classifiers used for the 
study, namely, Support Vector Machines and Random Forest. 
Section III explains the experimental study and the found 
results. Discussion of results is presented in Section IV. 
Finally, Section V concludes the study. 

II. CLASSIFICATION 

Classifiers draw a decision boundary between the classes 
in the data. There are several classifiers present. In this article, 
we use the Support Vector Machine (SVM) and the Random 
Forest. The SVM has shown great results and in a favorable 
choice in machine learning and computer vision tasks. 
Moreover, SVM has been heavily used with the DL features 
learning and training. The Random forest has also shown 
considerable good results and is the choice in many 
classification scenarios. 

A. SVM 

Support Vector Machine (SVM) is a supervised learning 
classifier that is introduced in 1990s by Boser, Guyon, and 
Vapnik [37]. It is widely used because of its accuracy, ability 
to deal with high-dimensional data, and its flexibility in 
modeling different sources of data. The SVM has two 
advantages: first, it has the ability to produce non-linear 
decision boundaries by using methods of linear classifiers; 
secondly, the classifier can be applied to data with no fixed-
dimensional vector space representation [38]. Moreover, SVM 
has a robust theoretical foundation, which is statistical 
learning theory; and successful empirical applications as well. 
It has been applied to different fields such as hand written 
digits recognition, text classification, and objects recognition 
[38]. The SVM is in this article is used due to its over-all good 
detection performance in similar areas. 

B. Random Forest 

Two popular methods of classification trees have grabbed 
researchers‘ attention: bagging and boosting. These two 
methods can generate many classifiers and aggregate their 
results [39]. One of the important advantages of Random 
forest is that it can be used for regression or classification 
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problems. In an enhancement addition to bagging, Breiman 
[40] proposed random forests as an additional layer of 
randomness. Either in regression or classification problems, 
Random forest can help in ranking the importance of 
variables. Random forest has only two parameters: the number 
of trees in the forest and the number of variables in the node. 
These two parameters constitute to the straightforwardness of 
Random forest. Moreover, it constructs every tree with a 
different bootstrap sample of data, which changes how trees 
are constructed in regression and classification. Each node is 
split by the best predictor chosen at the node randomly among 
a subset of predictors [40]. Many trees are grown and every 
tree vote for a particular class. The class with high number of 
trees is the final class assigned to particular data instance. 

III. EXPERIMENTAL SETUP AND RESULTS 

A. Features and Dataset 

For an evaluation experiments, the article uses datasets 
from the NDPI videos. Further details of the NDPI dataset is 
available in [21]. NDPI is huge dataset and comprises of more 
than 40 Gigabytes of videos data. For experimental analysis, 
the data is divided into three classes. These are: Un-
acceptable, Acceptable, and Flagged. Fig. 1 shows some 
samples. The experiment setup uses the data from image based 
filtering and large amount of data. It has three main reasons. 
First is that the data is well organized into three classes, which 
is a good representative problem for machine learning 
algorithms? Secondly, though the data is image, in the feature 
form, the data is converted to numerical values. Thus the data 
is equated to other datasets and similar machine learning 
problems. Thirdly, the data is huge, more than 40 Gigabytes in 
size. Therefore, it is assumed that the data that is processed in 
this article is big data. Therefore, the results can be extended 
to other datasets of similar nature. 

For feature extraction, the article uses the 
Autocorrelogram. We use the F-measure as an evaluation 
parameter as it is mostly used in the state of the art for similar 
problems and applications and is favorable for this evaluation 
as well. The F-measure takes into account the Precision and 
the Recall. 

 
Fig. 1. Sample Images from NDPI [21]. 

B. Instance Sampling 

In data analysis domains, an instance represents the 
individual object of which the problem is composed of. This 
means that if the problem is based on the color, let‘s say in 
computer vision, the instance is the set of pixels for the 
problem concerned. The instance may also represent a 
complete image if the features are globally extracted from the 
images. In most cases, the instance is directly related to the 

number of objects available for training and testing. If 
instances are reduced, the training data and ultimately testing 
data is reduced. If instances are increased, it will mean that the 
training and testing data is increased. If a ten folds cross 
validation is used, instance increase results in the increase of 
90% training samples, and 10% testing samples. This can have 
one of three impacts on the results. The result could stay 
neutral. It can increase in certain cases, and it can also 
decrease in certain cases. 

The neutral case can occur generally in two ways. First 
one is if the instance added has similar nature to the previous 
data. This means that the instance is already represented in the 
model of the machine learning classifier. The addition of this 
new instance thus has either contributed no extra information. 
This thus increases the dataset without any benefit to the 
machine learning model.  The second neutral case is when 
contribution of the instance addition is negligible due to the 
large number of data samples. This can also mean that the data 
is already covering most of the model generation cases and no 
extra addition of data is required. 

The increase in classification results due to instance 
increase can be due to the fact that the new instances 
contribute strong classification information in the model. It 
means that the new addition strongly represents the classes in 
the dataset and also exhibiting strong correlation with the 
attributes for that instance. This type of scenario is always the 
objective in machine learning paradigm. However, every 
machine learning algorithm has certain limits and adding more 
strong instances may not contribute any information for 
classification. One of the interesting phenomenon that can 
occur by adding strong instances is over-fitting. The model 
can become much diverted to special cases and does not 
generalize well. 

The decrease in performance can be due to either the new 
instances are not related to the classes in specific problem, or 
the instance added is representing (adding) strong noise to the 
model. This phenomenon is most common and collecting 
correct dataset is the challenge for most machine learning 
related problems. Therefore, the data cleaning task is essential 
in many classification tasks for reliable model generation. The 
decrease in classification performance can also be due to less 
number of data instances. Many machine learning algorithms 
require considerable amount of data (not big data) for reliable 
model generation and generalization for unseen test data 
instances. However, this does not mean that data increase 
beyond certain limit will keep on increasing the performance. 
Every classifier has limits for certain problems and thus 
thorough analysis is required for the final model generation 
and the amount of data needed for the particular problem. 

In the experimentation setup, the objective is to analyze 
instance addition and removal on the results of machine 
learning. The experimental approach however proceeds in 
reverse manner. The proposed experimentation setup proceeds 
by reducing instances and analyzing the results. The 50% 
instances are sampled from original 100% data and the results 
are noted. The 50% sample is randomly selected from the 
original data. The sample is thus analyzed based on 90% 
training data and 10% testing data. This means that from 
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particular 50% data, the 90% of the data is used for training 
the classifier for model generation. This model generated thus 
is used to test the 10% data of the 50% sample and 
performance is noted. This 90% training data the 10% training 
data from the 50% of the original data is also selected ten 
times to take average 10 ten permutations. This is to remove 
biasness. This of taking 50% training data is then repeated 100 
times. This generates 1000 experiments. 

Fig. 2 shows experiments where the 50% instances are 
randomly selected for the actual 100% data. Fig. 2 shows 
performance in terms of an F-measure for the 3 classes‘ data 
based on the SVM classifier. The ―Actual Data‖ label in Fig. 2 
represents the F-measure of the original 100% data. From 
Fig. 2, an F-measure of 0.784 is obtained for the 100% data. 
The F-measure for the average of first ten experiments 
(labelled ―10‖ in Fig. 2) is 0.733 which is less than the F-
measure of the 100% instances. The F-measure for the average 
of next ten experiments (represented as ―20‖ in Fig. 2) is 
0.703. The third set has an F-measure of 0.755. The fourth, 
fifth, and sixth set has an F-measure of 0.762, 0.757, and 0.77, 
respectively. The seventh set has a reduced F-measure of 
0.722. The eighth and ninth sets have an F-measure of 0.744 
and 0.741. The last set of experiments gets an increased F-
measure of 0.797. This is even higher than the F-measure of 
the 100% original set. The average of the all 100 experiments 
(labelled as ―Average of 100‖) is 0.748. As the F-measure for 
100% data is 0.784, therefore, the difference is 0.036. This 
means the total difference of 3.6% to the original 100% data. 
This thus means that the model of 100% data is 3.6% more 
accurate than the sampled data. 

 
Fig. 2. F-measure for the 3 Classes‘ Data based on the SVM Classifier for 

50% Random Instances. The 10 Interval Sets Show the Average F-measure of 

10 Experiments. 

Fig. 3 shows experiments with the Random Forest and 
almost follows on average the SVM scenario. The ―Actual 
Data‖ label in Fig. 3 represents the F-measure of the original 
100% data. From Fig. 3, an F-measure of 0.841 is obtained for 
the 100% data. The F-measure for the average of first ten 
experiments (labelled ―10‖) is 0.83 which is less than the F-
measure of the 100% instances as was with the case of SVM. 
The F-measure for the average of next ten experiments 

(represented as ―20‖) is 0.809. The third set has an F-measure 
of 0.822. The fourth, fifth, and sixth set has an F-measure of 
0.836, 0.824, and 0.814 respectively. The seventh set has a 
reduced F-measure of 0.818. The eighth and ninth sets have an 
F-measure of 0.84 and 0.816. The last set of experiments gets 
an F-measure of 0.83. The average of the all 100 experiments 
(labelled as ―Average of 100‖) is 0.823. As the F-measure for 
100% data is 0.841, therefore, the difference is 0.018. This 
means the total difference of 1.8% to the original 100% data. 
This thus means that the model of 100% data is 1.8% more 
accurate than the sampled data. 

 
Fig. 3. Random Forest Classifier F-measure for the 3 Classes‘ Data based on 

the 50% Random Instances. The 10 Interval Sets Show the Average F-

measure of 10 Experiments. 

C. Incremental Training and Test Data 

The instances of data can also be analyzed based on the 
amount of training and testing data available. Generally, the 
more training data, the better is the performance. This may be 
true in most problems; however, this may not be true in every 
case because the more the data, the more is the chance of 
noisy data and thus wrong models. Therefore, to analyze this, 
in the following set of experiments, the objective is to see if 
the impact of the amount of training data affects the 
performance of machine learning algorithms and classifiers. If 
a smaller set of data can generate good model that can 
generalize well and have good classification performance, 
then large of data may not be needed to process, thus saving 
time and computing resources. Moreover, this enables 
researchers to quickly analyze datasets on many algorithms 
which is useful for research and development activities. 

Table I shows the F-measure based analysis of the SVM 
classifier with the incremental increase of training data. In 
Table I, Training data of ―10‖ means that the 10% of the data 
is used for generating the model of the Random Forest 
classifier and 90% data is used for testing this model. The F-
measure for such scenario is 0.648. Increasing the training 
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data to 20% and reducing the testing data to 80% gets an F-
measure of 0.718. At 30% training data, the F-measure 
increases to 0.742. With 40, 50, and 60 percent, the F-measure 
obtained is 0.744, 0.776, and 0.745 respectively. At 70%, an 
increase F-measure of 0.768 is obtained. At 80%, the F-
measure keeps increasing to 0.799. At 90% training data and 
10% testing data, the F-measure normalizes at 0.806. 

Table I shows that the increase in training data and its 
relation to the F-measure is not consistent in all cases. For 
example, the F-measure at the 60% training is lower than the 
50% training, which in theory should be higher. Similarly, in 
case of the 70% training, the F-measure is less than 50% 
training. 

TABLE I. F-MEASURE OF SVM FOR INCREMENTALLY INCREASING (BY 

10%) THE TRAINING DATA STARTING FROM 10%. SIMILARLY, 
INCREMENTALLY REDUCING (BY 10%) THE TESTING DATA STARTING FROM 

90% 

Training Data Testing Data F-measure (SVM) 

10 90 0.648 

20 80 0.718 

30 70 0.742 

40 60 0.744 

50 50 0.776 

60 40 0.745 

70 30 0.768 

80 20 0.799 

90 10 0.806 

 

Table II shows the F-measure based analysis of the 
Random Forest classifier with incremental increase of training 
data. The F-measure 10% training data is 0.706. Increasing the 
training data to 20% and reducing the testing data to 80% gets 
an F-measure of 0.77. At 30% training data, the F-measure 
increases to 0.785. With 40, 50, and 60 percent, the F-measure 
obtained is 0.769, 0.806, and 0.803 respectively. At 70%, an 
increase F-measure of 0.854 is obtained. At 80%, the F-
measure keeps increasing to 0.865. At 90% training data and 
10% testing data, the F-measure normalizes at 0.854. 

Table II shows the increase in training data and its relation 
with the F-measure is not consistent in all cases. For example, 
the F-measure at the 40% training is lower than the 30% 
training. Similarly, in case of the 90% training, the F-measure 
is less than 80% training. 

Both in the Tables I and II, the increase in training data 
and its relation to the F-measure is not consistent in all cases. 
This could be due to many reasons. One of the reasons is that 
the increasing number of samples can add noise and thus more 
training data does not mean good final trained model. 
Secondly, since the selection of training data is random, the 
training sample does not pick many instances of the ―good‖ 
representative samples. 

TABLE II. F-MEASURE OF RANDOM FOREST FOR INCREMENTALLY 

INCREASING (BY 10%) THE TRAINING DATA STARTING FROM 10%. SIMILARLY, 
INCREMENTALLY REDUCING (BY 10%) THE TESTING DATA STARTING FROM 

90% 

Training Data Testing Data F-measure (Random Forest) 

10 90 0.706 

20 80 0.77 

30 70 0.785 

40 60 0.769 

50 50 0.806 

60 40 0.803 

70 30 0.854 

80 20 0.865 

90 10 0.854 
 

IV. DISCUSSION OF RESULTS 

Experiments in both the Fig. 2 and 3 depict interesting 
results. With these experiments, it is observed that 50% 
reduction does not drastically harm the overall model. On 
average, in SVM only 3.6%, and in Random Forest, only 1.8% 
performance is reduced if only 50% data is used. This is 
acceptable in most cases unless there is a serious nature of the 
problem in hand. The benefit one gets is the processing of 
extremely reduced size and sets of data instances. This is 
useful in number of scenarios. 50% reduction in instances 
means that in most cases, the data will fit easily in the RAM 
and the processing times will be considerably reduced, 
benefitting in terms or resources. Other benefits are that since 
data generation and gathering is not an easy task, the less 
number of instances means that less but clean data can be 
useful in many cases. 

Fig. 4 shows the follow of the F-measure plotted against 
the amount of training data. The X-Axis shows the training 
samples. The Y-Axis shows the F-measure. Fig. 4 shows 
slightly incremental increase in F-measure for both the SVM 
and the Random Forest in many cases. However, interestingly, 
it can be seen that even with the 10% training data, there is not 
a huge jump and difference in the F-measure of consecutive 
incremental sets of data in both the SVM and the Random 
Forest cases. From this it can be deduced that in special cases, 
smaller sub-sampled data can be used for model generation in 
machine learning problems. This is useful in cases, where 
there are either limitations on hardware or one has to select 
among many available machine learning algorithms. The 
second being the most common scenario. The first case of 
hardware resources is more defined in the case of processing 
big datasets. The ever increasing data has put tremendous 
limitations on the processing power of many available 
machines. Many researchers need special hardware to process 
large amount of data that is expensive and is mostly still not 
available to some research groups and teaching environments. 
This experimental setup shows that in special cases, 
generating many random models from the smaller samples and 
averaging its performance can represent larges datasets. This 
type of reliance on smaller models is thus useful in quick 
model analysis and experimentation, where the final model 
can be then generated by processing big datasets. 
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Fig. 4. F-measure for Incrementally Increasing (by 10%) the Training Data 

Starting from 10%. Similarly, Incrementally Reducing (by 10%) the Testing 
Data Starting from 90%. 

V. CONCLUSION 

Big data processing requires large computing resources. 
This puts bottleneck not only on processing data but also 
many researchers don‘t get the freedom to analyze large 
datasets. This article analyzed large amount of data from 
different perspectives. One of them is the processing reduced 
sets of large data with less computing resources. Thus the 
article analyzed 40 GB data, by testing different strategies of 
reducing the processed data without losing and compromising 
on the detection and model learning in machine learning. 
Many alternatives were analyzed and it is observed that 50% 
reduction does not drastically harm the machine learning 
model performance. On average, in SVM only 3.6%, and in 
Random Forest, only 1.8% performance is reduced if only 
50% data is used. This is acceptable in most cases unless there 
is a serious nature of the problem in hand. The benefit one 
gets is the ability and freedom of processing of extremely 
reduced size and sets of data instances. This is useful in 
number of scenarios. The 50% reduction in instances means 
that in most cases, the data will fit easily in the RAM and the 
processing times will be considerably reduced, benefitting in 
execution, time and or resources. From the incremental 
training and testing experiments, it is found that in special 
cases, smaller sub-sampled data can be used for model 
generation in machine learning problems. This is useful in 
cases, where there are either limitations on hardware or one 
has to select among many available machine learning 
algorithms. The second point being the most common scenario 
in machine learning research. In future, the experimentation 
setup will be expended to massive parallel architecture for 
large collection of data sets including textual data. Also, the 
DL will be analyzed for sampled based training and testing. 

ACKNOWLEDGEMENT 

The work in this article is funded in its entirety by the 
Dean of Scientific Research (SRD), Project number: coc-
2018-1-14-S-3603 at the Qassim University, Kingdom of 
Saudi Arabia 

REFERENCES 

[1] W. Albattah, ―The Role of Sampling in Big Data Analysis,‖ in 

Proceedings of the International Conference on Big Data and Advanced 
Wireless Technologies - BDAW ‘16, 2016, pp. 1–5. 

[2] M. Hilbert, ―Big Data for Development: A Review of Promises and 
Challenges,‖ Dev. Policy Rev., vol. 34, no. 1, pp. 135–174, Jan. 2016. 

[3] D. A. Reed and J. Dongarra, ―Exascale computing and big data,‖ 
Commun. ACM, vol. 58, no. 7, pp. 56–68, 2015. 

[4] A. L‘Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz, 
―Machine Learning With Big Data: Challenges and Approaches,‖ IEEE 
Access, vol. 5, no. 1, pp. 7776–7797, 2017. 

[5] K. Singh, S. C. Guntuku, A. Thakur, and C. Hota, ―Big Data Analytics 
framework for Peer-to-Peer Botnet detection using Random Forests,‖ 
Inf. Sci. (Ny)., vol. 278, pp. 488–497, 2014. 

[6] R. Clarke, ―Big data, big risks,‖ Inf. Syst. J., vol. 26, no. 1, pp. 77–90, 
Jan. 2016. 

[7] D. Sullivan, ―Introduction to big data security analytics in the 
enterprise.‖ [Online]. Available: 
https://searchsecurity.techtarget.com/feature/Introduction-to-big-data-
security-analytics-in-the-enterprise. [Accessed: 31-Jul-2018]. 

[8] C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos, ―Big data 
analytics: a survey,‖ J. Big Data, vol. 2, no. 1, p. 21, Dec. 2015. 

[9] G. Bello-Orgaz, J. J. Jung, and D. Camacho, ―Social big data: Recent 
achievements and new challenges,‖ Inf. Fusion, vol. 28, pp. 45–59, Mar. 
2016. 

[10] J. Zakir, T. Seymour, and K. Berg, ―Big Data Analytics,‖ Issues Inf. 
Syst., vol. 16, no. 2, pp. 81–90, 2015. 

[11] U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, ―Critical 
analysis of Big Data challenges and analytical methods,‖ J. Bus. Res., 
vol. 70, pp. 263–286, Jan. 2017. 

[12] K. Engemann et al., ―Limited sampling hampers ‗big data‘ estimation of 
species richness in a tropical biodiversity hotspot.,‖ Ecol. Evol., vol. 5, 
no. 3, pp. 807–820, 2015. 

[13] J. K. Kim and Z. Wang, ―Sampling techniques for big data analysis in 
finite population inference,‖ Jan. 2018. 

[14] S. Liu, R. She, and P. Fan, ―How Many Samples Required in Big Data 
Collection: A Differential Message Importance Measure,‖ Jan. 2018. 

[15] J. Bierkens, P. Fearnhead, and G. Roberts, ―The Zig-Zag Process and 
Super-Efficient Sampling for Bayesian Analysis of Big Data,‖ Jul. 2016. 

[16] J. Zhao, J. Sun, Y. Zhai, Y. Ding, C. Wu, and M. Hu, ―A Novel 
Clustering-Based Sampling Approach for Minimum Sample Set in Big 
Data Environment,‖ Int. J. Pattern Recognit. Artif. Intell., vol. 32, no. 2, 
pp. 1–10, Feb. 2018. 

[17] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, ―Machine learning on 
big data: Opportunities and challenges,‖ Neurocomputing, vol. 237, no. 
1, pp. 350–361, 2017. 

[18] D. Kotzias, M. Denil, N. de Freitas, and P. Smyth, ―From Group to 
Individual Labels Using Deep Features,‖ Proc. 21th ACM SIGKDD Int. 
Conf. Knowl. Discov. Data Min. - KDD ‘15, pp. 597–606, 2015. 

[19] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, ―Learning 
Hierarchical Features for Scene Labeling,‖ IEEE Trans. Pattern Anal. 
Mach. Intell., vol. 35, no. 8, pp. 1915–1929, Aug. 2013. 

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ―ImageNet classification 
with deep convolutional neural networks,‖ Proceedings of the 25th 
International Conference on Neural Information Processing Systems - 
Volume 1. Curran Associates Inc., pp. 1097–1105, 2012. 

[21] ―Pornography Database.‖ [Online]. Available: 
https://sites.google.com/site/pornographydatabase/. [Accessed: 09-Nov-
2017]. 

[22] M. Moustafa, ―Applying deep learning to classify pornographic images 
and videos,‖ Nov. 2015. 

[23] A. P. B. Lopes, S. E. F. de Avila, A. N. A. Peixoto, R. S. Oliveira, M. de 
M. Coelho, and A. de A. Araújo, ―Nude Detection in Video Using Bag-
of-Visual-Features,‖ in 2009 XXII Brazilian Symposium on Computer 
Graphics and Image Processing, 2009, pp. 224–231. 

[24] A. Abadpour and S. Kasaei, ―Pixel-Based Skin Detection for 
Pornography Filtering,‖ Iran. J. Electr. Electron. Eng., vol. 1, no. 3, pp. 
21–41, 2005. 

[25] R. Ullah and A. Alkhalifah, ―Media Content Access: Image-based 

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

F-measure (SVM)

F-measure (Random Forest)



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 8, 2018 

356 | P a g e  

www.ijacsa.thesai.org 

Filtering,‖ Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 3, 2018. 

[26] C. Szegedy et al., ―Going Deeper with Convolutions,‖ Sep. 2014. 

[27] E. Valle, S. Avila, F. Souza, M. Coelho, and A. de A. Araujo, ―Content-
Based Filtering for Video Sharing Social Networks,‖ in XII Simpósio 
Brasileiro em Segurança da Informação e de Sistemas 
Computacionais—SBSeg 2012, 2011, p. 28. 

[28] P. Monteiro, S. Eleuterio, M. De, and C. Polastro, ―An adaptive 
sampling strategy for automatic detection of child pornographic videos.‖ 

[29] N. Agarwal, H. Liu, and J. Zhang, ―Blocking objectionable web content 
by leveraging multiple information sources,‖ ACM SIGKDD Explor. 
Newsl., vol. 8, no. 1, pp. 17–26, Jun. 2006. 

[30] C. Jansohn, A. Ulges, and T. M. Breuel, ―Detecting pornographic video 
content by combining image features with motion information,‖ in 
Proceedings of the seventeen ACM international conference on 
Multimedia - MM ‘09, 2009, p. 601. 

[31] J.-H. Wang, H.-C. Chang, M.-J. Lee, and Y.-M. Shaw, ―Classifying 
Peer-to-Peer File Transfers for Objectionable Content Filtering Using a 
Web-based Approach.‖ 

[32] Hogyun Lee, Seungmin Lee, and Taekyong Nam, ―Implementation of 
high performance objectionable video classification system,‖ in 2006 
8th International Conference Advanced Communication Technology, 
2006, p. 4 pp.-pp.962. 

[33] D. Liu, X.-S. Hua, M. Wang, and H. Zhang, ―Boost search relevance for 
tag-based social image retrieval,‖ in 2009 IEEE International 
Conference on Multimedia and Expo, 2009, pp. 1636–1639. 

[34] J. A. Da, S. Júnior, R. E. Marçal, and M. A. Batista, ―Image Retrieval: 
Importance and Applications.‖ 

[35] S. Badghaiya and A. Bharve, ―Image Classification using Tag and 
Segmentation based Retrieval,‖ Int. J. Comput. Appl., vol. 103, no. 15, 
pp. 20–23, Oct. 2014. 

[36] A. N. Bhute and B. B. Meshram, ―Text Based Approach For Indexing 
And Retrieval Of Image And Video: A Review,‖ Apr. 2014. 

[37] B. E. Boser, I. M. Guyon, and V. N. Vapnik, ―A training algorithm for 
optimal margin classifiers,‖ in Proceedings of the fifth annual workshop 
on Computational learning theory - COLT ‘92, 1992, pp. 144–152. 

[38] S. Tong and D. Koller, ―Support Vector Machine Active Learning with 
Applications to Text Classification,‖ J. Mach. Learn. Res., vol. 2, no. 11, 
pp. 45–66, 2001. 

[39] A. Liaw and M. Wiener, ―Classification and Regression by 
randomForest,‖ R News, vol. 2, no. 3, pp. 1–10, 2002. 

[40] L. Breiman, ―Random Forests,‖ Mach. Learn., vol. 45, no. 1, pp. 5–32, 
2001. 

[41] Kowsari, Kamran, Mojtaba Heidarysafa, Donald E. Brown, Kiana Jafari 
Meimandi, and Laura E. Barnes. "RMDL: Random Multimodel Deep 
Learning for Classification." In Proceedings of the 2nd International 
Conference on Information System and Data Mining, pp. 19-28. ACM, 
2018. 

[42] Kowsari, Kamran, Donald E. Brown, Mojtaba Heidarysafa, Kiana Jafari 
Meimandi, Matthew S. Gerber, and Laura E. Barnes. "Hdltex: 
Hierarchical deep learning for text classification." In Machine Learning 
and Applications (ICMLA), pp. 364-371, 2017. 


