
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

451 | P a g e

www.ijacsa.thesai.org

Defects Prediction and Prevention Approaches for

Quality Software Development

Mashooque Ahmed Memon
1

Department of Computing

Faculty of Engineering, Science and

Technology (FEST) Karachi,

Pakistan

Mujeeb-Ur-Rhman Magsi

Baloch
2

Department of Mathematics &

Computer Science

University of Sindh Jamshero

Hydrabad, Pakistan

Muniba Memon
3
,

Syed Hyder Abbas Musavi
4

Department of Computing

Faculty of Engineering, Science and

Technology (FEST) Karachi,

Pakistan

Abstract—The demand for distributed and complex business

applications in the enterprise requires error-free and high-

quality application systems. Unfortunately, most of the developed

software contains certain defects which cause failure of a system.

Such failures are unacceptable for the development in the critical

or sensitive applications. This makes the development of high

quality and defect free software extremely important in software

development. It is important to better understand and compute

the association among software defects and its failures for the

effective prediction and elimination of these defects to decline the

failure and improve software quality. This paper presents a

review of software defects prediction and its prevention

approaches for the quality software development. It also focuses

a review on the potential and constraints of those mechanisms in

quality product development and maintenance.

Keywords—Software; defects; predictions; preventions;

software development

I. INTRODUCTION

The software is a single entity that has a strong impact on
all characteristics of software development for different
domains that includes defense, medicine, science, transport,
telecommunications and others. The activities of all these
domain sectors constantly require high-quality software for
their exact needs for the performance [1]. Software quality
means being an error-free product that produces predictable
results and can be delivered within a time and cost constraints
[2, 3]. As a result, it very important to have appropriate
approaches to develop high-quality software that can meet the
increasing needs in today's business world's. The past studies
suggest that no single defect detection technology can solve all
types of defects detection problems. So, this review focuses on
the effectiveness and efficiency of the defect detection process
to meet the quality enhancement and cost reduction.

A “defect” is some fault or imperfection in the operation of
a software product or process as a result of an error, fault, or
failure. The paradigm defines the term "error" as a human
action that leads to inappropriate results, and a "defect" as an
erroneous decision that results in inaccurate results for a
solution to a problem. A single error can result in one or more
failures, and multiple failures can cause a failure. To avoid
such failures in software products, defect detection activities
are performed at each stage of the SDLC, depending on the
needs and criticalities of the development.

Software defect identifications models [2] are very weak
because they have not been able to overcome the unknown
relationship between the defects and failures. The relationships
understanding among them are very difficult due to the
diversity of defects and failures. The "Simplified assumptions"
and "heuristics” methods are frequently utilized because of the
associated failures associated with failures that lead to difficult
tasks for the prediction. Therefore, having an accurate defect
prediction model or process in software development can able
to reduce high failures and advance the eminence of the
software development [4, 5]. The main cause of software
failures due to its design flaws which mostly caused by the
software engineers due to the misunderstanding of the
requirement specifications or developing a defective code. A
review study on the various domain system failure estimation
suggests that 90% of the failure is due to system defects [6, 7,
21].

The approaches of defect prevention are the process for
improving software quality, the core objective of that is to
identify frequent causes of defects and to amend the process to
avoid this kind of the defect from importunate [8]. The purpose
of preventing defects is to identify them at the commencement
of the life cycle and avoid them from happening again so that
the defects no longer occur. Based on defect analysis, it has
established to be a constructive mechanism for detecting and
preventing defect requirements at the beginning phase of the
software lifecycle. By analyzing the general classified defects
taxonomy and past errors it can be better prevented and reliable
high performing systems can be developed [11]. In terms of
performance and reliability requirements, a smaller number of
failures in the software requirement will affect in improved
secure and quality software systems. The scope of this paper is
to present an insightful exploration of the mechanisms of
defect detection and defect prevention approaches that can be
pursued for the quality system development processes.

The following paper presents the importance of defect
prediction in Section 2 and it approaches in Section 3. In the
Section 4 it presents defect prevention methodology, and
Section 5 discuss its importance. Section 6 concludes and
summarizes the paper.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

452 | P a g e

www.ijacsa.thesai.org

II. IMPORTANCE OF DEFECT PREDICTIONS

In literature many empirical studies and tools [1, 5, 7, 8, 18]
are designed to identify the defects for the quality software
development. But these approaches can be executed at multiple
points during development, not testing, which usually only
happens after the executable software module is produced. A
key indicates in considerate the prospective value of evaluation
is that it is approximated that defects that escape from one
phase of the SDLC to another, it could take an instruction for
the extent to restore in the next phase. As a result, the
development cost, quality, and time of the software will be
significantly impacted because it is implemented at the early of
the development cycle.

The software defects observed in IBM operating system
depend on the field data is presented in [8], which is being
classified into 408 types of defects using an "Orthogonal
Defect Classification (ODC)" [16]. This classification approach
is to quantify the defect, failure relation and the accuracy of
prediction, 668 defects are injected over 12-open source
projects. The major goal of this quantification is to show a
complex relationship between software defects and failure
disabilities through identifying the availability of the multiple
task, such as events, conditions, etc., but the ODC approach
does not allow for multiple events or conditions analysis so,
user must fix it manually.

TABLE I. A SUMMARIZATION OF MERIT AND DEMERITS OF EXISISTING DEFECT PREDICTION APPROACHES

REF# Approach Merits Demerits

[13]

This paper has proposed seven

test effort allocation strategies

utilizing the complexity measure

for Fault Prediction.

1. A software test simulation model based on defect prediction

results for evaluating the cost-effectiveness of a test work

distribution strategy.
2. The simulation model estimates the number of discoverable

defects in relation to a given test resource, allocation strategy

and a group of test modules for defect prediction.
3. The strategy with the best defect prediction model, test effort

might be reduced by 25%, but still detected many of the defects

commonly found in the test, but the company needed about 6%
testing effort to collect metrics, organize data, and modeling.

1. This strategy shows the best failure

prediction model but requires a

high amount of test effort.
2. The results show that only the

suitable test strategy with

adequately high defect prediction
accuracy can reduce the test

workload through defect

prediction.

[14]

Analysis of the Exception

handling through patterns process

modeling

1. It shows that in many cases, there are some abstract patterns to

detect the relationship between exception handling functions
and the specification process.

2. Emphasis is placed on the exception handling patterns observed

in process modelling over the years and described using three
types’ process modelling notations.

1. It has found that the exception

handling pattern described here is

useful for increasing the level of
abstraction of the process model. It

provides a way to access exception

handling by providing a
framework of questions.

[15]
Defect and Failure data analysis.

1. This solution analyses the defect and failure data of real-system

case studies.

2. Exclusively discuss the causes of software failures using other

defects due to localization and distribution of defects.
3. The results show that entity faults are often reasoned for many

faults spread all over the system.

1. It reveals the nature of defects and
failures, and defects-defects are

very beneficial.

[19]

It proposed a Specification-Based

Inspection approach for the

programs verification.

1. Systematic and rigorous inspection methods are available to

take advantage of formal specifications and analysis.

2. The purpose of this method is to utilize checks to establish if

each functional solution described in the specification is
correctly executed by a group of program paths to contributes

certain functional aspects of the specification.

3. The results show that this method perhaps more valuable at
detecting "function-related faults" than PBR but may be

somewhat ineffective in detecting implementation-related

faults.

1. It does not provide evaluation
support for powerful features

related to testing, such as reading

computer instructions, managing

scans, and subsequent scans for

code modifications.

[20]

Utilize the machine learning

classifiers based on multi-

function selection techniques and

implement a classification-based
bug prediction method using

"Naive Bayes" and "Support

Vector Machine (SVM)"
classifiers for bug forecasting.

1. The research is generally applicable to a diversity of "feature

selection techniques" based on classification-based error
prediction methods.

2. Several feature selection techniques are studied, which are

commonly used for classification-based defect prediction.
3. These techniques reject fewer essential features before

achieving most constructive classification. The complete

features utilized for training is significantly decreased below
10% of the original functionality.

4. Performance analysis of different numbers of features shows

that even 1% of the original features can achieve powerful
performance.

1. These techniques discard less

important functions for achieving
optimal classification performance.

2. A basic limitation of historically

based error predictions, as there
possibly recent types of errors that

are not so far included in the

training data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

453 | P a g e

www.ijacsa.thesai.org

In past years, several software technologies have been
developed for the integration of state-of-the-art collection
technologies that manipulate and model log-based error
analysis and log data; for example, "MEADEP" [35], "NOW"
[36], and "SEC" [37, 38]. However, since the log-based
investigation is not supported by fully automated procedures,
the processing load on most analysis loads is inadequate
knowledge of the system. For example, a complex algorithm is
defined for rebooting the OS in the log to identify based on
sequential analysis of log messages. In addition, an error that
activates multiple messages in the log causes considerable
effort to use the entries for the same results of the error
manifestation. Preprocessing tasks are crucial for accurate error
analysis [6, 22, 27, 36].

A. Monden et al. [13] proposed a simulation model for
software testing by means of defect prediction outcomes to
measure the cost-effectiveness of the test assignment strategy.
The proposed model assessment and resource allocation
strategy, various qualified defects associated with a set of
modules and defect prediction results. In a case study of the
small failure prediction system recognition analysis in the
telecommunications domain, the outcomes of the simulation
model shows that the effective scheme is to make the test
workload proportional to many failures likely in the module.
Through using this strategy of the failure prediction model, the
test work is reduced by 25%, while detecting defects that are
usually found in the testing.

The merits and demerits of most relevant defect prediction
approaches have been summarized in Table I.

III. ANALYSIS OF DEFECT PREDICTION APPROACHES

In this section, we discuss the various approaches and
methods for defect prediction. Most of the approaches utilize
machine learning and classification methodology to perform
the prediction.

A. Defect Prediction based on Patterns

The Pattern-based detection is also based on classifiers but
using a unique iterative pattern for classifying sequential data
[11], software trace analysis is used for defect detection. A
group of distinctive features captures a repeating sequence of
actions from the program implementation trajectory that is
executed first. Subsequently, the best attributes for
classification are selected. Using those feature sets to train the
classifier model, which will be used to identify defects. The
pattern processing models allow the investigation and
enhancement of processes together besides that working to
coordinate multiple defects and tools to execute tasks. This
kind of modeling usually focuses on the specification process,
that is, how every work should execute as needed.
Unfortunately, the real-world processes are rarely going well
according to the need. A more comprehensive analysis of this
kind of process still requires detailed information on the
process model and their actions that should be taken in the
event in case of failure.

B. S. Lerner et al. [14] have revealed that in numerous
cases for the software defect handling, there are some abstract
patterns that can detect the relationship between defect
handling functions and specification procedures. As in an

"object-oriented design patterns" makes the possibility of the
"development", "documentation", and "maintenance of object-
oriented programs", it can be considered that process patterns
can assist the enhancement and maintenance of the process
models. It focuses on the defect handling patterns which have
observed in process modeling for many years. They also
illustrate these patterns by means of three process modeling
symbols with the "UML 2.0 Activity Diagram" [17], "BPMN"
and "Little-JIL" [18]. It presents an abstract construction of the
pattern, in addition to examples of usage patterns. It also
discusses some preliminary statistics to support the arguments
that are common in these models and represent their ability to
use these patterns to consider the comparative merits among
the symbols.

B. Defect Prediction based on Graph Mining

The methodology of Graphics mining is based on dynamic
control flow that helps identify defects that might not crash a
system [34]. Its functions as a simple processing through graph
nodes calls to reduce the processing overhead during
execution. A graph node characterizes a function and a
function call to another function which is represented by an
edge. The influence of everyone edge of a node is computed
based on their calling frequency. The high variation in the
frequency call and changes in the node structure of the graph
may be the cause of the failure. If there is a problem with the
data being reassigned between the methods, it may also affect
the named graph because of its functional impact.

C. Defect Prediction based on ASA

The process of “Automatic Static Analysis (ASA)" [22],
[27] based prediction is primarily used for physical code
analysis, which is one of the oldest traditions still practiced, but
automation tools are increasingly utilized for fundamental
difficulty associated with "non-observance failures", "probable
memory leaks", "variable usage", etc. They occupy an essential
position in the development phase because they save effort and
critical re-defect leak test cycles. There are many such tools
which are commonly being used as, "Findbugs", "CheckStyle",
and "PMD" based on Java technology. Even though this
participates as a significant function in the development cycle,
it is not widely used for the defect prediction in the
maintenance cycle. However, systems with compatible sources
for automated static analysis can be utilized as clean aspects for
excellent detection mechanisms, because the errors introduced
in the executing field scan are very expensive. The
maintenance cycle of the ASA prediction tool does not find
many defects that may perhaps guide to the failure. Research
analysis for the efficiency of ASA detection tools over the
open source code represents show < 3% of failures.

S. Liu et al. [19] have presented the solution to the
problems of the statistical analysis system, which are generally
utilized for defect detection, and suffering due to the
requirement of rigidity. It sustains a methodical and strict
inspection method that takes advantage of "formal-
specification analysis". The intention of the process is to
describe the specification of a group of routes from every tasks
base program and the route specification of the program, where
the program contribute to the execution of an appropriately
implemented functional environment to determine whether to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

454 | P a g e

www.ijacsa.thesai.org

use the inspection or not. A systematic, auto-generated list of
functional scenarios to obtain program paths, where each path
has connected to scenarios and an inspection report generated.

C. F. Kemerer et al. [21] have studied the effects of
inspection rates on software quality and studied the controller
for a wide-ranging of a group of features that could influence
the analysis. This data comes from the" personal software
process (PSP)", performs inspections and performs
development group activities. Specifically, the speed of the
PSP design and code review corresponds to the preparation of
the test.

J. Zhang et al. [22] has presented an enhancement to the
automated static analysis which can help provide high-quality
products in economic production, and they perform static
analysis and check for errors and customer reports on three
major sectors of the development of industrial software
systems for "Nortel Networks analysis". This data shows an
"automated static analysis (ASA)"for an appropriate means of
detecting software errors. The automated static analysis using
"Orthogonal Defective Classification “schemes is effective in
identifying and mapping error probes so that subsequent
software creation steps can target on more difficult, functional,
and algorithmic errors. Most of the flaws that appear to be
determined by automated static analysis are generated by some
major type of programming error, and some of these types are
likely to cause security vulnerabilities. The "Statistical analysis
(SA)" outcome indicates that many automated SA errors can be
effective in identifying module problems. Results analysis
Static analysis tools show that it complements other error
detection technologies to produce economical, high-quality
software products.

D. Defect Prediction using Classifiers

A classifier based on a "clustering algorithm" and a
"decision tree" or "neural network “are being utilized to
recognize anomalous events of detected common incidents for
the prediction [11], [12]. If a defect is found, the classifier
labels the defect path to systematize the classifier. Some
classification criteria generally use "NaiveBayes" and
"Bagging”. The Bayesian classification is a "supervised
learning method" and is a "statistical method" for classification
[12]. It represents a basic probability model that can capture
uncertainty in a model of reason that determines the probability
of a result. A recent study [7], [8], [10], [12] in this province is
proposed without a secondary supervisory model to capture the
regular code of behavioral probability distributions in each
region to recognize incidents when they behave abnormally.
This information is utilized to filter more than the labeling
gives to the positioning algorithm to focus on abnormal
observations.

The prediction classifiers utilizing machine learning
techniques [40] are recently introduced for the defects
prediction in source files. A classifier is primary trained in the
defects of software development and then used to prediction if
the defect vision changes it will also cause errors. A
disadvantage of the existing classifier-based defect prediction
technique is that it does not have enough control for actual
utilization due to the various machine learning functions and
the prediction time is slow.

T. Mende et al. [23] has suggested that assessing the efforts
consciously can measure the accuracy of defect prediction. The
traditional evaluation methods such as "recall", "precision",
"Alberg chart" and "ROC curve" ignore quality assurance
costs, but the action is expected to be approximately
proportional to the audit or review of the module. They took
advantage of the measurement to the bottom to find that the
required measurement accuracy was needed for the actual test.

S. Shivaji et al. [24] has typically considers numerous
attribute collection techniques for classification-based error
prediction methods that use "Naive Bayes" and "Support
Vector Machine (SVM)" classifiers. This technology discards
less significant functions in anticipation of the most
constructive classification result to be achieved. The complete
functions utilized in construction is considerably decreased,
often down to below 10% of the original. Both "Naive Bayes"
and "SVM" through attribute selection [9] present significant
improvements in comparison to the F-measure of the
classification in the failure prediction and results compared to
those proposed in [25].

Although many case studies on failure prediction in
industry record applications [28], [29], [30] few studies have
been estimated by early failure detection to reduce test effort or
improve software quality. P. L. Li et al. [26] reported on ABB's
experience in applying field failure prediction. Their
experience is about how to decide the precise modeling method
and how to evaluate the actual accuracy of predictions for
several versions of the time-period. They assessed the
usefulness of the forecast depends on the professional view.
They identified the module as vulnerable by an expert because
it identified the top four error-prone errors that identify
modules in the predictive model. In addition, the module
priority results have been reported by the test team to be used
to reveal additional errors that are probable to reason a low
error in the module. Unfortunately, there is no quantitative
information on the effort to further test and the number of
additional leaks needed.

IV. DEFECT PREVENTION

During software development, many defects occurred
during the period of the development process. It is a defect
considering that defect which is injected at the early stage of a
cycle and eliminates in respite of the development process
[16], [31]. Therefore, error prevention is an essential element in
enhancing the excellence of software processes.

Defect prevention is a quality improvement process aimed
at identifying ordinary reasons of defects and altering related
processes to prevent the type of error recurrence. It also
improves the eminence of software products and reduces
overall costs, time and resources. This allows the project to
maintain a good balance of "time", "cost" and "quality". The
intention of defect prevention is to recognize defects at the
inauguration of the SDLC and prevent them from reoccurring
so that defects do not reappear.

A. Methodology for Defect Prevention

Defect prevention is an important activity of SDLC. Most
software project teams focus on defect detection and
correction. Therefore, error prevention is often an ignored

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

455 | P a g e

www.ijacsa.thesai.org

component. It is, therefore, appropriate to take steps to prevent
defects from being commenced into the product at an early
stage in the project. These measures are inexpensive and the
total cost savings achieved by benefiting from the stage later
are significantly higher than the cost of defect remediation.
This saves costs and resources in the initial phases of defect
analysis. The "Error injection methods" and processes facilitate
knowledge of error prevention. After practicing this
knowledge, quality has improved. It also improves overall
productivity. The methodology for the defect prevention
includes three phases as follows:

1) Identification of the defects: The identification of the

defects can be pre-structured and designed according to the

activities of specific failure defects being observed. Typically,

defects can be identified in design reviews, code reviews, GUI

reviews, functional and unit testing activities performed at

different stages of the SDLC. In case of a defect is identified,

the designed classifier classifies the defect utilizing the

defined defect knowledge base. In case of having a vast defect

knowledge base, it is important to analyze the failure defects

through a continuous learning process to have an effective

classification approach.

A model to examine software quality factors, such as a list
of future defect density modules are proposed by
T.Khoshgovar and E. Allen [31, 32]. The input to the model is
a measure of "software complexity", such as LOC, the number,
and complexity of distinctive operators. Then perform a
stepwise regression to find the weight of each factor. L. C.
Briand et al. [33] utilized "object-oriented metrics" to predict
defect classes that might contain errors and used "PCA with
logistic regression" to predict defect classes that are prone to
errors. S. Morasca et al. [39] utilized a "rough set theory" and
"logistic regression" to predict the possibility of the modules
failure in commercial software.

2) Analysis of the Defects: The analysis of the defects is a

continuous process for improving learning quality using defect

or error data. Defect analysis generally categorized based on

the process dependencies and condition process activities for

the improvisation of defect identification and its possible

cause for the prevention. The "Root cause analysis (RCA)"

approach is an effective software defect analysis mechanism

which is very useful in understanding the problems of a

failure. The goal of the RCA is to recognize the root reason of

defects and initiate the action of defects removal from the

sources by analyzing each individual defect precisely. The

qualitative analysis is inadequate only by the limitations of

human investigation capabilities. This ultimately improves the

quality and productivity of software organizations that provide

feedback to developers.

3) Classification of the Defects: Defect classification can

be done using common "Orthogonal Defect Classification

(ODC)" techniques [16] to find defect groups and types. The

ODC technology classifies defects when they occur first and

when the defects are fixed. The ODC methodologies for

specific technologies and some management characteristics

and for each defect orthogonal can mutually exclude. These

attributes provide access to all the information that comes

from the root cause, pattern, and data through a tremendous

amount of data that can be analyzed. A high-quality action

preparation and tracking can reduce failures and enable high

levels of learning.

In case of critical and large projects, it must be deeply
classified to analyze and understand defects, and in the small
projects, it can be classified as defects up to the initial level of
the ODC to preserve time and effort. It classifies various types
of defects at diverse phases of development requirements, such
as specification collection, logical design, testing, and
documentation.

Defect prevention has been encountered in the past to
analyze future defects and to prevent these types of
occurrences including special operations. Defect prevention
software processes can be applied to improve the quality of one
or more phases of the SDLC. From the beginning phases of the
project, to prevent defects from being presented into the
product, measurements are appropriate. Even these measures
are low cost, and the total cost savings achieved due to the
profit at the end of the phase are quite high compared to the
cost of a fixed failure. Therefore, analyzing the time needed for
failures at an early stage reduces costs and resources. The
defect injection method and the process can realize defect
prevention knowledge. After the practice, this knowledge
improves the quality. It also increases overall productivity.

B. Importance of Defect Prevention

Defect mitigation strategies exist but reflect the most cost-
effective expenditures reflecting the high-level test maturity
principles associated with testing efforts. To detect defect
errors in the development lifecycle for implementing code
specifications in your design, you should avoid errors.
Therefore, test strategies can be categorized into two
categories: defect detection technology and defect prevention
technology.

Defect prevention during application development can save
significant cost and time. It is therefore also important to
decrease the number of rebuild failures resulting in cost
reductions, ease of maintenance of ports and reuse.
Organizations must also develop high-quality systems and
provide resources to make systems reliable in less time.
Determining defects increases productivity precautions and can
be traced back to the fact that these defects have been injected
into the lifecycle phase.

The benefits of analysis software failures and defects are
well known. However, there is little-detailed research based on
concrete data. M. Hamill et al. [15] analyzes the defect and
failure data of a two big real-time system case studies. They
specifically discuss the causes of software defects by localizing
and distributing defects and using other errors. The results
show that individual failures occur frequently through multiple
failures in the overall system. This inspection is significant
because it does not sustain multiple-use heuristics and
hypothesis about the precedent. Moreover, finding and fixing
errors such as software errors that result in large, complex
systems is often done despite the difficult and difficult
development of software development.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

456 | P a g e

www.ijacsa.thesai.org

Due to the lack of specific domain knowledge, the new and
different domain software should be developed and
implemented. In many cases, the appropriate quality
requirements are not initially specified. Inspection work is
labor intensive and requires a high level of skill. Sometimes a
well-developed quality measurement may not have been
identified at design time.

No software defect detection technology can solve all the
problems in error detection. Similar software reviews and tests,
static analysis tools (or automated static analysis) can be used
to eliminate defects before the software product is released.
Inspection, prototyping, testing, and proof of correctness are
several ways to identify defects. Formal inspections to identify
failures in the initial phases of developing the most efficient
and expensive quality assurance techniques. The adoption of
several required prototypes clearly helps to overcome the
perceived deficiencies. Testing is one of the least efficient
techniques. It may be possible to evade detection at an early
stage, which is the culprit and can be found in time. Especially
the accuracy at the coding level proves to be a good detection
method. Create the most accurate and economical way to build
software.

V. CONCLUSION

Nowadays, intrinsic demands for software reliability are
growing, and high defect tolerance systems are attracting
attention. This paper has discussed several defect detection
mechanisms and defect prevention mechanisms in relation to
recent trends in the latest technologies. This paper presented
review of the importance of defect prediction and their various
approaches. Although there are several methods and
technologies that are used to analyze for defect detection in a
software system, but not all technologies are suitable for all
systems. This paper has discussed defect prediction based on
patterns, graph mining, ASA, and using the classifiers. Defect
prevention methodology through defect identification, analysis
and classification and its importance in reducing the system
failure have also been discussed. This paper concludes that
selection of defect prediction and prevention should be based
on the system size and its complexity to provide a more
adaptable and reliable solution for defect handling and provide
high-quality software.

REFERENCES

[1] D. Bowes, S. Counsell, T. Hall, J. Petric, T. Shippey, "Getting Defect
Prediction Into Industrial Practice: the ELFF Tool", IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW),
pp. 44-47, 2017.

[2] Q. Song, Y. Guo, M. Shepperd, "A Comprehensive Investigation of the
Role of Imbalanced Learning for Software Defect Prediction", IEEE
Transactions on Software Engineering, Pp. 1 - 1, 2018.

[3] Z. Li, X.-Y.Jing, X. Zhu, "Progress on approaches to software defect
prediction", IET Software, Vol. 12(3), Pp. 161 - 175, 2018.

[4] A. Rahman, L. Williams, "Characterizing Defective Configuration
Scripts Used for Continuous Deployment", IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST) Pp.
34 - 45, 2018.

[5] S. Huda, K. Liu, M. A.razek, A. Ibrahim, S. Alyahya, H. Al-Dossari, S.
Ahmad, "An Ensemble Oversampling Model for Class Imbalance
Problem in Software Defect Prediction", IEEE Access, Vol. 6, Pp.
24184 - 24195, 2018.

[6] L. Pascarella, F. Palomba, A. Bacchelli, "Re-evaluating method-level
bug prediction", IEEE 25th International Conf. on Software Analysis
Evolution and Reengineering (SANER), pp. 592-601, 2018.

[7] R. Malhotra, L. Bahl, S. Sehgal, P. Priya, "Empirical comparison of
machine learning algorithms for bug prediction in open source
software", International Conference on Big Data Analytics and
Computational Intelligence (ICBDAC), Pp. 40 - 45, 2017.

[8] A. Dehghan, A. Neal, K. Blincoe, J. Linaker, D. Damian, "Predicting
Likelihood of Requirement Implementation within the Planned Iteration:
An Empirical Study at IBM", IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR), Pp. 124 - 134, 2017

[9] X. Chen, Y. Shen, Z. Cui, X. Ju, "Applying Feature Selection to
Software Defect Prediction Using Multi-objective Optimization", IEEE
41st Annual Computer Software and Applications Conference
(COMPSAC), Vol. 2, Pp. 54 - 59, 2017.

[10] M. Lanza, A. Mocci, L. Ponzanelli, "The Tragedy of Defect Prediction,
Prince of Empirical Software Engineering Research" IEEE Software,
Vol. 33(6), Pp. 102 - 105, 2016.

[11] J. H. C. Wu, Jacky Keung, "Decision support for global software
development with pattern discovery", 7th IEEE International Conference
on Software Engineering and Service Science (ICSESS), Pp. 182 - 185,
2016.

[12] J. Yang, H. Qian, "Defect Prediction on Unlabeled Datasets by Using
Unsupervised Clustering", IEEE 18th International Conference on High-
Performance Computing and Communications, Pp. 465 - 472, 2016.

[13] A. Monden, T Hayashi, S Shinoda, K Shirai, J Yoshida, M Barker and K
Matsumoto, "Assessing the Cost-Effectiveness of Fault Prediction in
Acceptance Testing", IEEE Transactions on Software Engineering, DOI-
098-5589, 2013.

[14] A. S. Lerner, S Christov, L J. Osterweil, R Bendraou, U Kannengiesser
and A Wise, "Exception Handling Patterns for Process Modeling", IEEE
Transactions On Software Engineering, Vol. 36, No. 2, March/April
2010.

[15] M. Hamill and K Goseva-Popstojanova, "Common Trends in Software
Fault and Failure Data" IEEE Transactions on Software Engineering,
Vol. 35, No. 4, July/August 2009.

[16] P. Tiejun, Z. Leina, F. Chengbin, "Defect Tracing System Based on
Orthogonal Defect Classification", International Conference on
Computer Science and Software Engineering, Vol. 2, Pp. 574 - 577,
2008.

[17] OMG, "Unified Modelling Language", Superstructure Specification,
Version 2.1.1, http://www.omg.org/spec/ UML/2.1.1/
Superstructure/PDF/, 2010.

[18] A. Wise, "Little-JIL 1.5 Language Report", technical report, Dept. of
Computer Science, Univ. of Massachusetts, 2006.

[19] S. Liu, Y Chen, F Nagoya and J A. McDermid, "Formal Specification-
Based Inspection for Verification of Programs", IEEE Transactions on
software engineering, vol. 38, no. 5, 2012.

[20] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams, and A.
E. Hassan, "Revisiting common bug prediction findings using effort
aware models", Proc. 26th IEEE Int'l Conference on Software
Maintenance (ICSM2010), pp. 1-10, 2010.

[21] C. F. Kemerer and Mark C. Paulk, "The Impact of Design and Code
Reviews on Software Quality: An Empirical Study Based on PSP Data",
IEEE Transactions on Software Engineering, Vol. 35, No. 4,
July/August 2009.

[22] J. Zheng, L Williams, N Nagappan, W Snipes, J P. Hudepohl and M A.
Vouk, "On the Value of Static Analysis for Fault Detection in Software",
IEEE Transactions on Software Engineering, Vol. 32, No. 4, April 2006.

[23] T. Mende and R. Koschke, "Revisiting the evaluation of defect
prediction models", Proc. Int'l Conference on Predictor Models in
Software Engineering (PROMISE'09), pp. 1-10, 2009.

[24] S. Shivaji, E. J Whitehead Jr., R Akella and S Kim, "Reducing Features
to Improve Code Change-Based Bug Prediction", IEEE Transactions on
Software Engineering, Vol. 39, No. 4, April-2013.

[25] S. Kim, E. Whitehead Jr., and Y. Zhang, "Classifying Software
Changes: Clean or Buggy?" IEEE Trans. Software Eng., vol. 34, no. 2,
pp. 181-196, Mar./Apr. 2008.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

457 | P a g e

www.ijacsa.thesai.org

[26] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson, "Experiences and
results from initiating field defect prediction and product test
prioritization efforts at ABB Inc.", Proc. 28th Int'l Conf. on Software
Engineering, pp. 413-422, 2006.

[27] F. Wedyan, D. Alrmuny, and J. M. Bieman, "The Effectiveness of
Automated Static Analysis Tools for Fault Detection and Refactoring
Prediction", ICST '09. International Conf., Vol. 1(4), pp.141-150, 2009.

[28] N. Ohlsson, and H. Alberg, "Predicting fault-prone software modules in
telephone switches", IEEE Trans. Software Engineering, vol. 22, no. 12,
pp. 886-894, 1996.

[29] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the location
and number of faults in large software systems", IEEE Trans. on
Software Engineering, vol. 31, no. 4, pp. 340-355, 2005.

[30] A. Tosun, B. Turhan, and A. Bener, "Practical considerations in
deploying AI for defect prediction: a case study within the Turkish
telecommunication industry", Proc. 5th Int'l Conf. on Predictor Models
in Software Engineering (PROMISE'09), pp. 1-9, 2009.

[31] T. Khoshgoftaar and E. Allen, "Predicting the Order of FaultProne
Modules in Legacy Software", Proc. Int'l Symp. Software Reliability
Eng., pp. 344-353, 1998.

[32] T. Khoshgoftaar and E. Allen, "Ordering Fault-Prone Software
Modules", Software Quality J., vol. 11, no. 1, pp. 19-37, 2003.

[33] L. C. Briand, J. Wiist, S.V. Ikonomovski, and H. Lounis, "Investigating
Quality Factors in Object-Oriented Designs: An Industrial Case Study",
Proc. Int'l Conf. Software Eng., pp. 345-354, 1999.

[34] A. A. S. Haghighi, M. A. Dezfuli and S. M. Fakhrahmad, "Applying
mining schemes to software fault prediction: A proposed approach
aimed at test cost reduction", In Proceedings of the World Congress on
Engineering, pp.415-419, 2012.

[35] D. Tang, M. Hecht, J. Miller, and J. Handal, "Meadep: A Dependability
Evaluation Tool for Engineers", IEEE Trans. Reliability, vol. 47, no. 4,
pp. 443-450, Dec. 1998.

[36] A. Thakur and R.K. Iyer, "Analyze-Now-An Environment for Collection
and Analysis of Failures in a Networked of Workstations", IEEE Trans.
Reliability, vol. 45, no. 4, pp. 561-570, Dec. 1996.

[37] R. Vaarandi, "SEC-A Lightweight Event Correlation Tool", Proc.
Workshop IP Operations and Management, 2002.

[38] J. P. Rouillard, "Real-Time Log File Analysis Using the Simple Event
Correlator (SEC)", Proc. USENIX Systems Administration Conf., 2004.

[39] S. Morasca and G. Ruhe, "A Hybrid Approach to Analyze Empirical
Software Engineering Data and Its Application to Predict Module Fault-
Proneness in Maintenance", J. Systems Software, vol. 53, no. 3, pp. 225-
237, 2000.

[40] V. Challagulla, F. Bastani, I. Yen, and R. Paul, "Empirical Assessment
of Machine Learning Based Software Defect Prediction Techniques",
Proc. IEEE 10th Int'l Workshop Object-Oriented Real-Time Dependable
Systems, pp. 263-270, 2005.

