
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

547 | P a g e

www.ijacsa.thesai.org

New Hybrid Task Scheduling Algorithm with Fuzzy

Logic Controller in Grid Computing

Younes Hajoui, Omar Bouattane, Mohamed Youssfi, Elhocein Illoussamen

Laboratory SSDIA

ENSET Mohammedia, Hassan II University of Casablanca Mohammedia 28999, Morocco

Abstract—Distributed heterogeneous architecture is

extensively applied to a diversity of large scale research projects

conducive to solve complex computational problems. Mentioned

distributed systems consist of multiple heterogenous linked

processing units used to handle the continuous arrival jobs. The

tasks scheduling problem is concerned with resource allocation

strategies to assign jobs to available computing resources. The

load balancing of linked resources becomes a main issue to select

in each task schedule the adequate computing resource. Our

proposal consists of combining Q-learning with ACO (Ant

Colony Optimization) to solve the tasks allocation dilemma. In

our proposed Fuzzy Hybrid Framework, Fuzzy ants are used to

calculate at each scheduling operation, the novel reward values

whereas Q-learning is used to select the suitable Worker

Machine. The simulation findings confirmed the efficiency of the

proposed framework due to the significant decrease of the

makespan.

Keywords—Distributed systems; computational problems; load

balancing; Q-learning; ACO; fuzzy hybrid framework

I. INTRODUCTION

The tasks scheduling problem is concerned with resource
allocation strategies to assign jobs to available computing
resources. The load balancing of linked resources becomes a
main issue to select in each task schedule the adequate
computing resource.

Due to the heterogeneity of arrival tasks and uneven nodes
performance, some nodes work more than others. Therefore, to
achieve equal distribution and optimal use of resources,
scheduling need to be fair, well studied and strategic [1,2].

In [27], the authors propose a global taxonomy which is
used to classify frequently encountered types of job scheduling,
facilitate researchers to build on prior art, increase new
research visibility, and minimize redundant effort.

In the literature, load balancing algorithms can be classified
into centralized, decentralized or hierarchical categories [3].

In centralized scheme, tasks are scheduled first to a central
resource then this central node decides how to assign received
tasks to executers. A major disadvantage of using central node
is that it must not fail because it should ensure the allocation of
tasks.

Decentralized scheme does not contain a central scheduler,
scheduling decisions is done by all resources in the distributed
system [4, 9, 11, 29]. This model suffers from several

weaknesses and especially the cost resulting from the
involvement of all resources in the balancing procedure.

In hierarchical model [30], the responsible schedulers are
ordered in a hierarchy. This model results from the
hybridization of the centralized and decentralized model. Each
scheduler is responsible on the schedulers which are below at
lower levels and is under the orders of the schedulers from
above at higher levels.

Further, load balancing algorithms can be classified into
three categories: static, dynamic or adaptive algorithms.

The approach in the static balancing system assigns the
tasks by unique and definitive allocation, to the processors or
nodes in parallel architectures [5], [6], [28], [30]. Furthermore,
the static algorithms don’t have the ability to deal with the
dynamic changes of such environments. This problem
especially arises in distributed systems, where some external
variables such as network load and waiting for results of other
tasks, make difficult the effective scheduling of tasks. Also, the
continuous arrival of new tasks makes the scheduling difficult
by a static load balancing approach. In dynamic environments,
it is even possible that a static balancing creates major
imbalances greater than the balancing produced by a random
distribution of tasks. So, the need to adapt the initial machine
performance estimation is justified. Dynamic load balancing
approach considers, for task scheduling, the current processor
load [7, 9,12].

Recently, many load-balancing schemes based on mobile
agents have been proposed. The MAS [13] (Mobile Agent
Systems) are widely used to offer solutions to dynamic and
complex application domains. The main characteristic of these
intelligent systems is the migration. The ability of agent
migration facilitates the implementation of strong dynamic
load balancing strategy. The migrant agent selection is relied
on the strategy adopted by the load balancer while the
destination is related to the lightly loaded machines.

The migration decision is taken by a centralized load
balancer agent that activates the migration process when it is
obligatory. The centralized control is not suitable for a dynamic
scheme since it must collect data more regularly than the non-
centralized one, leading to the overload of the network traffic
[14].

In [15], a centralized load balancing scheme is proposed.
The principal measure for selecting a node is constructed on
job’s execution time, while location rule is constructed on
cooperation with cluster nodes. A special agent in each node is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

548 | P a g e

www.ijacsa.thesai.org

in charge for gathering the occupancy rate and the local
resource usage quantity. The migration choice is founded on
the comparison given to an assumed load threshold value.

In [16] authors suggest a new framework for job scheduling
founded on mobile agents. Their proposed model uses a
dispatcher agent to schedule parallel jobs to worker agents.
Each worker agent is installed in a node of the distributed
system giving to a load balancing strategy. A test of
application, associated to the distributed image processing, was
presented to judge the performance of the framework.
Additional work in [17] used a mobile agent, to migrate the
jobs from overloaded nodes to the under loaded ones. In the
used distributed system, each job should be allocated to a VPU
(virtual processing unit). The VPUs connected with each other
asynchronously by exchanging through their ports ACL
messages (FIPA-ACL). Exchanged messages contain data and
jobs to be performed.

In [18,19] the authors centered their research on studying
load balancing necessities in a distributed system and planned a
design and implementation of an advanced load balancing
scheme for grid environment via machine learning. Their
method is equilibria to the load dynamically. It uses initial load
data kept in the database at the primary level of the procedure.
Once a load imbalance arises, the recent load data is collected
and warehoused as raw data. Later, numerous machine-
learning algorithms have been used to process and investigate
the logged data. As a final step, the rules are automatically
engendered by data mining methods and used for migrating
jobs to rebalance loads.

Recently Multi-agent learning methods have been
extensively used in the problematic of resource allocation in
the Grid. In [20] the authors present Reinforcement learning in
which the agents learn through a trial and error to familiarize to
all variations such as the changing resource capacities,
latencies, or resource failure, by getting rewards for its actions.
The Agents give a score rewarding each machine based on its
role to reduce the maximum completion time (makespan).

The tasks scheduling has been proved as a NP-hard
problem accordingly [21, 31, 32]. Hence, the use of swarm
intelligence systems has become very suitable to deal with the
difficulty of such problems [22]. Ant colony optimization is
one of the well-known meta-heuristics that is largely used in
both path finding and load balancing [23, 22]. In [23] Authors
suggest two new distributed swarm intelligence inspired load-
balancing algorithms. The first and the second algorithm are
correspondingly based on ant colony and on particle swarm
optimization. The test of their proposed model is conducted by
means of GridSim, which is a platform of simulation based on
Java [24]. The robustness of their two strategies is assessed
using performance criteria such as makespan and load
balancing ratio.

In [25], the authors suggest a new scheme inspired load-
balancing algorithms founded on the use of ant colony
optimization. In the setting of their exploration, the load
balancer is used as an ant which selects, for the recent job, the
worker machine having the higher amount of pheromone.

Recently Multi-agent learning for load balancing problems
has been extensively treated in the literature. In [26] the
authors present machine learning in which the agents learn
through the previous experiments completed by the scheduler.
It is through test and mistake that the agent learns and
progresses his tactic. The Agents allocate a score rewarding
each worker machine based on its performance in the past. The
principal goal of these teams of cooperative agents is
maximizing the global reward, which will later reduce the
overall execution time (makespan).

In this paper, we propose a new Framework for task
scheduling based on hybridization of Q-Learning and ant-
colony optimization technique. Ants are used to calculate
reward and Q-Learning is used to schedule the current task to
the appropriate worker. In the planned model, a grid manager
agent is involved to allocate received jobs to the available
worker agents according to the precise decisions to minimalize
the total execution time (makespan). The proposed framework
is constructed by means of three layers, which are the user task
producer layer, the scheduling load balancing layer and the
workers layer. The implementation of the proposed method
uses the agents based middleware for distributed programming
JADE tool [8].

The structure of this paper is as follows: In Section II, we
formulate and describe the problem presented in this work.
Next in Section III we present the technical backgrounds used
to develop the proposed scheme. In Section IV, we present the
load balancing system used in task routing. In Section V, an
example of application using Multiple Program Multiple Data
(MPMD) architecture for the distributed image processing, is
presented to assess the performance of the proposed
framework. In the last section, a conclusion and perspectives
are presented.

II. PROBLEM DESCRIPTION

Basic assumptions and notations used in this paper are
listed below in Table I:

In our study, the total execution time: makespan can be
expressed as follows:

))(()(
1

tPMaxtP i

N

i





(2)

Where:

iii
k k

i NBCtTELtP /)(*)(
0 
































 (3)

k : Is the index of task Tk listed on the queue of the node Mi

at time t.

)(tTE i can be formulated as follows:





||Q

1

i

)(
i

ii tTE  (4)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

549 | P a g e

www.ijacsa.thesai.org

TABLE I. BASIC ASSUMPTIONS AND NOTATIONS

Notation Meaning

[N] = {1, 2, . . . ,
n}

Array of available resource workers.

[T] = {1, 2, . . . ,

m}
Array of Tasks to be executed.

Li
Speed of the network linking the node Mi
 with the Dispatcher.(see section V. A for further details)

Li= θi:- θPNi (1)

Pi
Computational power of the worker

machine Mi.

Ci Complexity of task Ti ∈ [T].

 Estimation execution time of Ti ∈ [T] .

TEi(t)
Estimated times of all Tasks wait in line on

 node (Mi) at time t.

|Qi|
Number of the wait in line tasks in machine

 Mi.

NBCi Number of cores of node Mi (CPUs).

NbTi(t)
Number of the wait in line tasks on node

 Mi at time t.

ri(t) Reward of machine i at time t.

si(t)
State of the machine (Mi) at time t.

si(t)={Li,Pi , NBCi , i , TEi(t), NbTi(t), ri(t)}.

S(t) S(t)={s1(t), s2(t), .., sN(t)}.

R(t) R(t)= {ri(t)}i=1..N.

Finally, the scheduling problem can be formulated as
minimization problem as given below:

 

















































iii
k k

t

i

N

i
t

NBCtTELMin

tPMaxMintPMin

/)(*

)))((()(

0

1











 (5)

III. TECHNICAL BACKGROUND

A. Ant Colony Optimization for the Travelling Salesman

Probmem (TSP)

The TSP is a complex problem widely studied in operations
research discipline. The problem consists in finding a shorter
path on a map that a traveler can choose to visit a list of cities.
Each city must be visited once. At the end of the trip, the
traveler must return to the starting city. The TSP problem is
solved by Dorigo et al. [20] by using the ant colony
optimization method (ACO), which engages a set of artificial
ants acting parallel searches on a map. The engaged ants
choose the following city based on inter-city distances and the
amount of pheromone deposited on the paths connecting the
cities. However, the pheromone evaporation is also must be
taken into consideration to deviate from the local optimum
solution.

For ant K, the probability of traveling from city i to city j is
given by the next formula [13, 14].

 {

∑

 ∈

 ∈

 

 (6)

Where:

 Represent all neighbor cities of i of the k

th
 ant.

 : Represent the value of pheromone on the path linking

city i by city j, a and b control the importance of .

 (7)

Where: : Is the distance between cities i and j.

 is continuously updated between i and j by the

following formula:

 () ∑ 

 (8)

Where:
  : Pheromone evaporation coefficient.

k

ij : Deposited Quantity of pheromone by k
th

 ant.

B. Q-learning

Reinforcement learning (RL) is a recent technique to deal
with stochastic and complex problems. By the successive
experiences and by trial and error exchanges between executers
agent and their residing environment, the agents learn how to
act optimally and to cope with more complex situations. This
Reinforcement learning model consist of an agent observing its
environment, choosing an action from the present state and at
that moment winning a positive or negative reward to the
action selected. The intention of the agent, during its
exploration, is to maximize its total upcoming positive reward
and avoid as possible any penalties. Q-learning [25, 26] figure
among the most known RL algorithms. Following the same RL
philosophy, Q-learning seeks to solve optimally any specified
Markov decision problem via a Q function. Q-value can be
calculated by (9) listed in the algorithm below:

Algorithm 1: Q-learning Algorithm

Begin

Initialize Q (s, a) arbitrarily

Initialize s

 Repeat

 Select a’ From s’ using rule resulting from Q;

 Take action a, observe r, s’;

 Q (s, a) = Q(s, a) + α[r +γ(Q(s’ ,a’) - Q(s, a))]; (9)

 s = s’;

 Until s is final state;

End.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

550 | P a g e

www.ijacsa.thesai.org

IV. PROPOSED WORK

In this section, we propose the fuzzy hybrid algorithm for
solving the problem of scheduling tasks on heterogenous
distributed machines. Next, we present a case study and show
the efficiency of the proposed hybrid method.

A. Architecture Description

This study purposes to solve a scheduling problem on
heterogenous parallel machines. An effective scheduling
algorithm plays a significant role in an effective supervision of
the grid and so in reducing the maximum completion time. In
our suggestion, the load balancing is reached by using a fuzzy
hybrid algorithm and a hierarchical mobile agent system.

As shown in Fig. 1, five types of mobile agents are engaged
in our proposal: The Producer-Agent, the Tester-Agent, the
Dispatcher-Agent, the Controller-Agent and the Worker-Agent.
The Producer agent is the one that characterizes the creators of
tasks as: web application, mobile application, embedded
system (IOT), expert agent (human) and so. The Tester-Agent
approximate by previous experiments the execution time of
novel tasks. The Dispatcher agent is a type of central manager
of the grid and is in charge for distributing new arrival tasks
among available workers. Controller-Agent is responsible for
continuously monitoring the status of the workers and Worker-
Agent performs the tasks received from the dispatcher.

Each machine that seeks to join the grid, at the 3rd layer, as
a worker node to participate on the computation must follow
these three steps called referencing phase [26]:

1) Send a request to the dispatcher to join the workers.

2) Receive and perform the referencing task: T0.

3) Communicate to the Dispatcher the results of T0

execution: Li, Pi, NBCi.

Fig. 1. Framework Architecture [26].

B. Proposed Fuzzy Hybrid Algorithm: FHA

The design of the proposed fuzzy hybrid algorithm is
inspired from the combination of Q-Learning and Ant Colony
algorithms. In this method, the hybrid algorithm performs in
two parallel phases. In the first phase, ant colony algorithm
involves a set of artificial ants acting parallel searches on
network links between Dispatcher and resources. Each ant Ai

receives from the controller machine, belonging on its network
link, the state si(t) of the worker Mi. All ants <Ai>i=1..N are
inside the Dispatcher node and calculate Pdi(t) according to
(10).


 



























N

j j

j

j

i

j

j

i

i

i

i

i

i

di

tTE
NbC

L
P

tNbT
tr

tTE
NbC

L
P

tNbT
tr

tP

1)(

1
**

1
**

)(

1
*)(

)(

1
**

1
**

)(

1
*)(

)(

























 (10)

Where:

)(tridi  (11)












)(

1
**

1
**

)(

1

tTE
NbC

L
P

tNbT i

i

i

i

i

b
di  (12)

Ri(t) refers to the pheromone deposited on the network link
connecting the Dispatcher with the worker machine Mi. It’s
also refers to the reward of the worker machine Mi at time t.
The Dispatcher rewards powerful machines by a positive value
and discourages weak machines by a negative value. The
rewards and penalties are continuously calculated in order to
supply the Q-Learning by the updated values to select the
appropriate worker.

To measure the worker reward, fuzzy logic process is
implemented by following in order of these three steps:

1) Fuzzification of Input: The first step in the fuzzy

inferencing method is the fuzzification. It consists to convert

crisp inputs into fuzzy inputs. Crisp inputs are precise inputs

calculated in real time by the Dispatcher. As shown in Fig. 2,

Pdi(t) and θPi(t-1) are the two measured crisp inputs passed

into the Fuzzy system for treatment to calculate associated

crisp output: reward.

In addition, it is important to note that θPi (t-1) refers to the
execution time of each node in the last previous schedule. This
parameter shows the performance of each node in the history
and is considered important next to Pdi (t) to calculate the value
of the worker's reward.

For each crisp input, a membership function is associated.
The two following figures: Fig. 3 and 4 shows the curve of
membership functions for : “Node rapidity” and “Node state”.

Regardless of the worker historical, a value of Pdi(t) that
tends to 1 indicates that the worker Mi is the most candidate
likely to receive the current task. This also shows that Mi is the
most under loaded among all the machines in the grid.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

551 | P a g e

www.ijacsa.thesai.org

Fig. 2. Input-Node Rapidity.

Fig. 3. Input-Node State.

Fig. 4. Output-Node Reward.

The fuzzy system output is a result of all the inputs and the
rules. Fig. 4 shows the curve of membership functions for the
output: Node reward.

2) Fuzzy Inference Process-Rules: Fuzzy inference is the

procedure of expressing from specific inputs, an output by

using fuzzy logic. This process implies membership

Functions, Logical operations, and If-Then Rules. The nature

of the rules is the most important parametrization of fuzzy

logic systems. It allows concluding the output based on the

inputs and the rules. Table II shows the list of fuzzy rules

employed to capture the imprecise methods of worker

rewarding.

TABLE II. IF THEN-RULES

If-Then Rules

1
if node state is (very overloaded or overloaded) and node rapidity is

(slow or normal) then node reward is very bad

2
if node state is normal and node rapidity is (slow or normal) then node

reward is bad

3
if node state is normal and node rapidity is speed then node reward is

good

4
if node state is underloaded and node rapidity is slow then node reward

is bad

5
if node state is underloaded and node rapidity is normal then node

reward is good

6
if node state is very underloaded and node rapidity is (slow or normal)

then node reward is good

7
if node state is (underloaded or very underloaded) and node rapidity is

speed then node reward is very good

3) Defuzzification: Defuzzification is the last step that

returns crisp output from the fuzzy sets. There are several

types of defuzzification methods. The following are the well-

known methods: Center of Sums Method (COS), Center of

gravity (COG) / Centroid of Area (COA) Method, Center of

Area / Bisector of Area Method (BOA), Weighted Average

Method and Maxima Methods.

The COG defuzzification is more commonly used fuzzy
mathematics method; it defines the output as corresponding to
the abscissa of the center of gravity of the surface resulting
from the combination of the conclusions and the rules in order
to apply the output found to the original problem.

At each computation of Pdi(t), the reward is calculated by
using COG defuzzification as follows:

Hence:













S

S
idi

S

S

dxx

dxxx

tr

dxx

dxxx

)(

)(

)(

)(

)(

Reward*











 (13)

In the inspired ACO algorithm, the smell of pheromone, as
shown in (13), has a direct effect on the calculation of future
rewards by the ants. Updating pheromone means that even if a
machine has a favorable reward, it does not prevent the
dispatcher from continuously reviewing its workload in order
to assign it a new value proportional to its state among the
other resources. In the second phase, Q-Learning is used to
search an optimal action-selection strategy for the tasks
allocation. Based on the immediate reward , the agent
Dispatcher updates its estimate for Q by its latest observation
from the grid environment. It calculates Qi for each machine Mi
according to (14). Then, it selects the machine having the great
value of Qi for the current task.

))),()','((max)((),(),('1 iittaiiitiit asQasQtrasQasQ   (14)

The grid manager executes parallelly both collaborative
algorithms to solve the problem described in this work. Ants

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

552 | P a g e

www.ijacsa.thesai.org

are used to calculate reward and Q-Learning is used to
schedule the current task to the appropriate worker.

V. PERFORMANCE EVALUATION AND DISCUSSIONS

In this section, the configuration of the used resources and
the results obtained from the fuzzy hybrid algorithm test are
described and presented.

The entire system is developed in Java and is tested on a
cluster of 10 heterogenous workers. The proposed load
distribution process purposes to deploy the agent features to
develop a self-directed organization by means of a real multi-
agent system based on the JADE platform (Java Agent
Development Framework).

The associated scheme aims to build a multi-agent system
to schedule jobs on a cluster of 10 heterogeneous machines.
The used method is based on the intelligent agents, which must
be able to delegate specific tasks.

The configurations of the 10 heterogenous workers is
determined by executing a referential task T0 by each machine
before joining the grid. The machines have four distinct
capacities: Pi ,Li ,NBCi .The scheduler must take into account
the heterogeneity of node capacities before making scheduling
decisions.

A. Referencing Phase

In this test example, there are ten heterogenous worker
nodes that are shown in Table III. These worker configurations,
shown below, are determined by executing a referential task T0

[26].

Note that:

θi: Total Time required to perform T0 .

θPNi: Total Time required to perform T0 on Node
Ni(i=1..n).

Li= θi:- θPNi (15)

Pi is inversely proportionate to θPNi . Pi=10
3
/ θPNi (16)

TABLE III. PARAMETERS CALCULATION BY REFERENCING PHASE

Node i Pi (ms) Li (ms) NbCi Reward:

0 80 2 4 1

1 150 10 2 1

2 120 8 1 1

3 70 10 4 1

4 100 8 8 1

5 90 10 2 1

6 160 3 1 1

7 170 5 16 1

8 120 1 2 1

9 145 3 4 1

B. Q-Learning and ACO Parametrization

The performance metric in searching optimum results
depends principally on the parameterization of both Q-
Learning and ACO operators.

The best Q-Learning operators found are shown in
Table IV.

TABLE IV. BEST PARAMETER SETTINGS OF THE Q-LEARNING OPERATORS

0.3 0.4

The best ACO operators found are shown in Table V.

TABLE V. BEST PARAMETER SETTINGS OF THE ACO OPERATORS

3 3 3 5 2

C. Load Balancing Theoretic (LBT)

Theoretically, the load balancing can be calculated for a
giving system S, having at time t, N distributed resources and
an overall execution time T, each resource must have a
workload of execution time around the theoretical value:
LBT=T / N which is impossible experimentally [26].

D. Scheduling Test by using Fuzzy Hybrid Algorithm (FHA)

The test experiments were generated using a set of NbT
heterogenous tasks (NbT= 1000). To evaluate and measure the
system performance, FHA algorithm is put under dissimilar
system loads complexity, we select randomly for each task Ti:

{

Our hypothesis is tested by making a comparative
experiment with the results obtained with scheduling by using
Ant colony optimization ACO [25] and by Q-Learning QL [26]
under the same controlled configurations.

The scheduling findings are as follows:

Table VI shows the distribution results by using ACO, Q-
learning, FHA method, whereas Fig. 5 shows a comparison
between their curves duration.

TABLE VI. DISTRIBUTION RESULTS BY USING ACO, Q-LEARNING, FHA

Node Ni
θPi(ms)

FHA

θPi(ms)

Q-L

θPi(ms)

ACO

0 70694609 91214279,5 50694609

1 90009970 56255662 40009970

2 40009970 37788468 70171256

3 60171256 34039604,5 90171256

4 60171256 36351290 41397431

5 143171256 42744272 110171256

6 78018383 148449863 58018383

7 129563908 89091486,9 149563908

8 55679447 165171256 65679447

9 85106444 99118657,5 55106444,3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

553 | P a g e

www.ijacsa.thesai.org

Fig. 5. Comparison Between ACO, Q-learning and FHA Curves Duration.

We use the ratio  to assess the performance of proposed

method FHA. The  is expressed as follows.

LBT

FHA
FHA




  (17)

In this section, as shown in Fig. 5, the performance of FHA
algorithm is tested in comparison with ACO and QL
algorithms, which are two of the well-known scheduling
methods for Heterogenous distributed systems as mentioned in
[25, 26].

Table VII shows the ratios calculated at the end of each
scheduling of 1000 tasks respectively by FHA, ACO, QL.

Clearly, it is shown that the proposed FHA method allows
the dispatcher to schedule tasks among the resources much
more efficiently than the ACO and QL methods.

The relevant question is whether the system will react in
the same way and the same optimality to more complex and
more heterogeneous tasks. The answer is of course no, we will
not always find the same ratios since it is an np hard problem.
Hence the need to develop the practice of artificial intelligence
to avoid the repetition of the same scheduling errors and to
master as possible the optimal control of all available
resources. Looking forward, our goal is to be focused on deep
learning through the experience accumulated during scheduling
already realized, which allows the dispatcher to review
continuously its strategy and then to reduce the total tardiness.

TABLE VII. CALCULATED RATIOS: FHA
, ACO

, QL

FHA
 ACO

 QL

1.85 1.95 2.14

VI. CONCLUSION

In this paper, we have developed a Fuzzy hybrid method
called FHA to solve the problem of tasks scheduling. For
efficiency purpose, the proposed Framework simultaneously
applies two algorithms that solve the same problem. The aim of
the proposed hybrid model is to combine the effectiveness of
Q-Learning and ACO to reduce the overall execution time and
then comes imbalance among available resources. The
experiment results showed that the proposed hybrid algorithm
has achieved a perfect convergence in terms of the load
balancing among available nodes in grid as well as improving
the optimal solution.

The proposed method can be extended to hybridize other
metaheuristics with RL algorithms in order to minimize as
possible the total tardiness.

REFERENCES

[1] X. Tang, S. Chanson, "Optimizing static job scheduling in a network of
heterogeneous computers," the 29 International Conference on Parallel
Processing, 2000.

[2] K. Li. Optimal load distribution in nondedicated heterogeneous cluster
and grid computing environments. Journal of Systems Architecture,
54(1):111–123, 2008.

[3] Kandagatla, C. (2003). Survey and Taxonomy of Grid Resource
Management Systems, University of Texas, Austin. [Online] Available:
http://www.cs.utexas.edu/users/browne/cs395f2003 /projects/ File:
KandagatlaReport.pdf.

[4] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress
in the study of distributed multi-agent coordination,” IEEE Trans. Ind.
Informatics, vol. 9, no. 1, pp. 427–438, 2013.

[5] Kameda, H., Li, J., Kim, C., Zhang, Y.: Optimal Load Balancing in
Distributed Computer Systems. Springer,London (1997)

[6] Penmatsa, S., Chronopoulos, A.T.: Price-based useroptimal job
allocation scheme for Grid systems. In: Proceedings of 20th IEEE
International Parallel and Distributed Processing Symposium, Rhodes,
2006

[7] Dhakal, S., Hayat, M.M., Pezoa, J.E., Yang, C., Bader, D.A.: Dynamic
load balancing in distributed systems in the presence of delays: a
regenerationtheory approach. IEEE Trans. Parallel Distrib. Syst. 18(4),
485–497 (2007)

[8] Dobber, M., Koole, G., Mei, R.: Dynamic load balancing experiments in
a Grid. In: Proceedings of IEEE International Symposium on Cluster
Computing and the Grid, Cardiff, 2005

[9] Penmatsa, S., Chronopoulos, A.T.: Dynamic multi-user load balancing
in distributed systems. In: Proceedings of 21st IEEE International
Parallel and Distributed Processing Symposium, Long Beach, 2007

[10] Shah, R., Veeravalli, B., Misra, M.: On the design of adaptive and de-
centralized load balancing algorithms with load estimation for
computational Grid environments. IEEE Trans. Parallel Distrib. Syst.18,
1675–1686 (2007)

[11] Arora, M., Das, S.K., Biswas, R.: A de-centralized scheduling and load
balancing algorithm for heterogeneous Grid environments. In:
Proceedings of International Conference on Parallel Processing
Workshops, pp. 499–505. IEEE, Piscataway (2002)

[12] Zheng, Q.: Dynamic load balancing and pricing in grid computing with
communication delay. J. Grid Comput. 6, 239–253 (2008)

[13] F. L. Bellifemine, G.Caire, and D. Greenwood, “Developing Multi
Agent Systems with JADE”. Wiley, 2007.

[14] Maha A. Metawei, Salma A. Ghoneim ,Sahar M. Haggag , Salwa M.
Nassar .'Load balancing in distributed multi-agent computing systems',
Ain Shams Engineering Journal, (), pp. 237–249. (23 May 2012)

[15] Cho ChoMyint, Khin Mar LarTun, A Framework of Using Mobile
Agent to Achieve Efficient Load Balancing in Cluster. In: Proc. 6th Asia
Pacific symposium on information and telecommunication technologies;
2005.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

554 | P a g e

www.ijacsa.thesai.org

[16] Y.Hajoui, M. Youssfi, O. Bouattane and E.Illoussamen “NEW MODEL
OF FRAMEWORK FOR TASK SCHEDULING BASED ON MOBILE
AGENTS,”. Journal of Theoretical & Applied Information Technology .
Vol. 81 Issue 1, p65-72 ; October,2015.

[17] M. Youssfi and O. Bouattane ,”Efficient Load Balancing Algorithm for
Distributed Systems Using Mobile Agents ,” Advanced Studies in
Theoretical Physics Vol. 9, 2015, no. 5, pp.245 - 253.

[18] A. Revar, M. Andhariya, D. Sutariya, "Load Balancing in Grid
Environment using Machine Learning - Innovative Approach, "
International Journal of Computer Applications (0975 – 8887), Volume
8– No.10, October 2010

[19] TarekHelmy ,Hamdi Al-Jamimi, Bashar Ahmed, HamzahLoqman
.'Fuzzy Logic–Based Scheme for Load Balancing in Grid Services', A
Journal of Software Engineering and Applications, pp. 149-156.
(December 2012)

[20] A. Galstyan, K. Czajkowski, K. Lerman, Resource allocation in the grid
with learning agents, Journal of Grid Computing 3 (2005) 91–100.

[21] Coffman Jr EG, Garey MR, Johnson DS. Approximation algorithms for
bin packing: a survey. Approximation algorithms for NP-hard problems,
PWS Publishing Co., 1996; 46–93.

[22] Ludwig, S.A., Moallem, A. : Swarm Intelligence Approaches for Grid
Load Balancing.J Grid Computing 9, 279–301 (2011)

[23] Kwang, M.S., Sun, H.W.: Ant colony optimization for routing and load-
balancing: survey and new directions.IEEE Trans. Syst. Man Cybern.
Part A33(5), 560–572(2003)

[24] Buyya,R.,Murshed,M. :GridSim :a toolkit for the modeling and
simulation of distributed resource management and scheduling for grid

computing.Journal of concurrency and computation practice and
experience 14(13-15),1175-1220(2002)

[25] Y. Hajoui, O. Bouattane, M. Youssfi, and E. Illoussamen, “New load
balancing Framework based on mobile AGENT and ant-colony
optimization technique”. In: Proceedings of International Conference on
Intelligent Systems and Computer Vision (ISCV), IEEE, Fez-Morocco
(2017).

[26] Y. Hajoui, O. Bouattane, M. Youssfi, and E. Illoussamen, “Q-Learning
applied to the problem of scheduling on heterogeneous architectures”.
International Journal of Computer Science and Network Security, vol.
18, no. 2, pp. 153–159, 2018.

[27] R. V. Lopes and D. Menasce, “A Taxonomy of Job Scheduling on
Distributed Computing Systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 12, pp. 3412–3428, 2016.

[28] M. I. Daoud and N. Kharma, “A high performance algorithm for static
task scheduling in heterogeneous distributed computing systems,”J.
Parallel Distrib. Comput., vol. 68, no. 4, pp. 399–409,2008

[29] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions
in autonomic systems,” inProc. Int. Conf. Autonomic Comput.,May.
2004, pp. 70–77.

[30] J. Koodziej and S. U. Khan, “Multi-level hierarchic genetic-based
scheduling of independent jobs in dynamic heterogeneous grid
environment,”Inform. Sci., vol. 214, pp. 1–19, 2012.

[31] J. Ullman, “NP-complete scheduling problems,” J. Comput. Syst. Sci.,
vol. 10, no. 3, pp. 384–393, 1975.

[32] M. Drozdowski, Scheduling for Parallel Processing, 1st ed. New York,
NY, USA: Springer, 2009.

