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Abstract—Distributed heterogeneous architecture is 

extensively applied to a diversity of large scale research projects 

conducive to solve complex computational problems. Mentioned 

distributed systems consist of multiple heterogenous linked 

processing units used to handle the continuous arrival jobs. The 

tasks scheduling problem is concerned with resource allocation 

strategies to assign jobs to available computing resources. The 

load balancing of linked resources becomes a main issue to select 

in each task schedule the adequate computing resource. Our 

proposal consists of combining Q-learning with ACO (Ant 

Colony Optimization) to solve the tasks allocation dilemma. In 

our proposed Fuzzy Hybrid Framework, Fuzzy ants are used to 

calculate at each scheduling operation, the novel reward values 

whereas Q-learning is used to select the suitable Worker 

Machine. The simulation findings confirmed the efficiency of the 

proposed framework due to the significant decrease of the 

makespan. 
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I. INTRODUCTION 

The tasks scheduling problem is concerned with resource 
allocation strategies to assign jobs to available computing 
resources. The load balancing of linked resources becomes a 
main issue to select in each task schedule the adequate 
computing resource. 

Due to the heterogeneity of arrival tasks and uneven nodes 
performance, some nodes work more than others. Therefore, to 
achieve equal distribution and optimal use of resources, 
scheduling need to be fair, well studied and strategic [1,2]. 

In [27], the authors propose a global taxonomy which is 
used to classify frequently encountered types of job scheduling, 
facilitate researchers to build on prior art, increase new 
research visibility, and minimize redundant effort. 

In the literature, load balancing algorithms can be classified 
into centralized, decentralized or hierarchical categories [3]. 

In centralized scheme, tasks are scheduled first to a central 
resource then this central node decides how to assign received 
tasks to executers. A major disadvantage of using central node 
is that it must not fail because it should ensure the allocation of 
tasks. 

Decentralized scheme does not contain a central scheduler, 
scheduling decisions is done by all resources in the distributed 
system [4, 9, 11, 29]. This model suffers from several 

weaknesses and especially the cost resulting from the 
involvement of all resources in the balancing procedure.   

In hierarchical model [30], the responsible schedulers are 
ordered in a hierarchy. This model results from the 
hybridization of the centralized and decentralized model. Each 
scheduler is responsible on the schedulers which are below at 
lower levels and is under the orders of the schedulers from 
above at higher levels. 

Further, load balancing algorithms can be classified into 
three categories: static, dynamic or adaptive algorithms. 

The approach in the static balancing system assigns the 
tasks by unique and definitive allocation, to the processors or 
nodes in parallel architectures [5], [6], [28], [30]. Furthermore, 
the static algorithms don’t have the ability to deal with the 
dynamic changes of such environments. This problem 
especially arises in distributed systems, where some external 
variables such as network load and waiting for results of other 
tasks, make difficult the effective scheduling of tasks. Also, the 
continuous arrival of new tasks makes the scheduling difficult 
by a static load balancing approach. In dynamic environments, 
it is even possible that a static balancing creates major 
imbalances greater than the balancing produced by a random 
distribution of tasks. So, the need to adapt the initial machine 
performance estimation is justified. Dynamic load balancing 
approach considers, for task scheduling, the current processor 
load [7, 9,12]. 

Recently, many load-balancing schemes based on mobile 
agents have been proposed. The MAS [13] (Mobile Agent 
Systems) are widely used to offer solutions to dynamic and 
complex application domains. The main characteristic of these 
intelligent systems is the migration. The ability of agent 
migration facilitates the implementation of strong dynamic 
load balancing strategy. The migrant agent selection is relied 
on the strategy adopted by the load balancer while the 
destination is related to the lightly loaded machines. 

The migration decision is taken by a centralized load 
balancer agent that activates the migration process when it is 
obligatory. The centralized control is not suitable for a dynamic 
scheme since it must collect data more regularly than the non-
centralized one, leading to the overload of the network traffic 
[14]. 

In [15], a centralized load balancing scheme is proposed. 
The principal measure for selecting a node is constructed on 
job’s execution time, while location rule is constructed on 
cooperation with cluster nodes. A special agent in each node is 
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in charge for gathering the occupancy rate and the local 
resource usage quantity. The migration choice is founded on 
the comparison given to an assumed load threshold value. 

In [16] authors suggest a new framework for job scheduling 
founded on mobile agents. Their proposed model uses a 
dispatcher agent to schedule parallel jobs to worker agents. 
Each worker agent is installed in a node of the distributed 
system giving to a load balancing strategy. A test of 
application, associated to the distributed image processing, was 
presented to judge the performance of the framework. 
Additional work in [17] used a mobile agent, to migrate the 
jobs from overloaded nodes to the under loaded ones. In the 
used distributed system, each job should be allocated to a VPU 
(virtual processing unit). The VPUs connected with each other 
asynchronously by exchanging through their ports ACL 
messages (FIPA-ACL). Exchanged messages contain data and 
jobs to be performed. 

In [18,19] the authors centered their research on studying 
load balancing necessities in a distributed system and planned a 
design and implementation of an advanced load balancing 
scheme for grid environment via machine learning. Their 
method is equilibria to the load dynamically. It uses initial load 
data kept in the database at the primary level of the procedure. 
Once a load imbalance arises, the recent load data is collected 
and warehoused as raw data. Later, numerous machine-
learning algorithms have been used to process and investigate 
the logged data. As a final step, the rules are automatically 
engendered by data mining methods and used for migrating 
jobs to rebalance loads. 

Recently Multi-agent learning methods have been 
extensively used in the problematic of resource allocation in 
the Grid. In [20] the authors present Reinforcement learning in 
which the agents learn through a trial and error to familiarize to 
all variations such as the changing resource capacities, 
latencies, or resource failure, by getting rewards for its actions. 
The Agents give a score rewarding each machine based on its 
role to reduce the maximum completion time (makespan). 

The tasks scheduling has been proved as a NP-hard 
problem accordingly [21, 31, 32]. Hence, the use of swarm 
intelligence systems has become very suitable to deal with the 
difficulty of such problems [22]. Ant colony optimization is 
one of the well-known meta-heuristics that is largely used in 
both path finding and load balancing [23, 22]. In [23] Authors 
suggest two new distributed swarm intelligence inspired load-
balancing algorithms. The first and the second algorithm are 
correspondingly based on ant colony and on particle swarm 
optimization. The test of their proposed model is conducted by 
means of GridSim, which is a platform of simulation based on 
Java [24]. The robustness of their two strategies is assessed 
using performance criteria such as makespan and load 
balancing ratio. 

In [25], the authors suggest a new scheme inspired load-
balancing algorithms founded on the use of ant colony 
optimization.  In the setting of their exploration, the load 
balancer is used as an ant which selects, for the recent job, the 
worker machine having the higher amount of pheromone. 

Recently Multi-agent learning for load balancing problems 
has been extensively treated in the literature. In [26] the 
authors present machine learning in which the agents learn 
through the previous experiments completed by the scheduler. 
It is through test and mistake that the agent learns and 
progresses his tactic. The Agents allocate a score rewarding 
each worker machine based on its performance in the past. The 
principal goal of these teams of cooperative agents is 
maximizing the global reward, which will later reduce the 
overall execution time (makespan). 

In this paper, we propose a new Framework for task 
scheduling based on hybridization of Q-Learning and ant-
colony optimization technique. Ants are used to calculate 
reward and Q-Learning is used to schedule the current task to 
the appropriate worker. In the planned model, a grid manager 
agent is involved to allocate received jobs to the available 
worker agents according to the precise decisions to minimalize 
the total execution time (makespan). The proposed framework 
is constructed by means of three layers, which are the user task 
producer layer, the scheduling load balancing layer and the 
workers layer. The implementation of the proposed method 
uses the agents based middleware for distributed programming 
JADE tool [8]. 

The structure of this paper is as follows: In Section II, we 
formulate and describe the problem presented in this work. 
Next in Section III we present the technical backgrounds used 
to develop the proposed scheme. In Section IV, we present the 
load balancing system used in task routing. In Section V, an 
example of application using Multiple Program Multiple Data 
(MPMD) architecture for the distributed image processing, is 
presented to assess the performance of the proposed 
framework. In the last section, a conclusion and perspectives 
are presented. 

II. PROBLEM DESCRIPTION 

Basic assumptions and notations used in this paper are 
listed below in Table I: 

In our study, the total execution time: makespan can be 
expressed as follows: 
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TABLE I.  BASIC ASSUMPTIONS AND NOTATIONS 

Notation Meaning  

[N] = {1, 2, . . . , 
n} 

Array of available resource workers. 

[T] = {1, 2, . . . , 

m} 
Array of Tasks to be executed. 

Li 
Speed of the network linking the node Mi 
 with the Dispatcher.(see section V. A for further details)  

Li= θi:- θPNi                                                          (1 )  

Pi  
Computational power of the worker  

machine Mi. 

Ci Complexity of task Ti ∈ [T]. 

   Estimation execution time of Ti ∈ [T] . 

TEi(t) 
Estimated times of all Tasks wait in line on 

 node (Mi) at time t. 

|Qi| 
Number of the wait in line tasks in machine 

 Mi. 

NBCi Number of cores of node Mi (CPUs). 

NbTi(t) 
Number of the wait in line tasks on node 

 Mi at time t. 

ri(t) Reward of machine i at time t. 

si(t) 
State of the machine (Mi) at time t. 

si(t)={Li,Pi , NBCi , i , TEi(t), NbTi(t), ri(t)}. 

S(t) S(t)={s1(t), s2(t), .., sN(t)}. 

R(t) R(t)= {ri(t)}i=1..N. 

Finally, the scheduling problem can be formulated as 
minimization problem as given below: 
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III. TECHNICAL BACKGROUND 

A. Ant Colony Optimization for the Travelling Salesman 

Probmem (TSP) 

The TSP is a complex problem widely studied in operations 
research discipline. The problem consists in finding a shorter 
path on a map that a traveler can choose to visit a list of cities. 
Each city must be visited once. At the end of the trip, the 
traveler must return to the starting city. The TSP problem is 
solved by Dorigo et al. [20] by using the ant colony 
optimization method (ACO), which engages a set of artificial 
ants acting parallel searches on a map. The engaged ants 
choose the following city based on inter-city distances and the 
amount of pheromone deposited on the paths connecting the 
cities. However, the pheromone evaporation is also must be 
taken into consideration to deviate from the local optimum 
solution. 

For ant K, the probability of traveling from city i to city j is 
given by the next formula [13, 14]. 
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Where:   : Is the distance between cities i and j. 

        is continuously updated between i and j by the 

following formula: 
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Where: 
  : Pheromone evaporation coefficient. 

k

ij : Deposited Quantity of pheromone by k
th

 ant. 

B. Q-learning 

Reinforcement learning (RL) is a recent technique to deal 
with stochastic and complex problems. By the successive 
experiences and by trial and error exchanges between executers 
agent and their residing environment, the agents learn how to 
act optimally and to cope with more complex situations. This 
Reinforcement learning model consist of an agent observing its 
environment, choosing an action from the present state and at 
that moment winning a positive or negative reward to the 
action selected. The intention of the agent, during its 
exploration, is to maximize its total upcoming positive reward 
and avoid as possible any penalties. Q-learning [25, 26] figure 
among the most known RL algorithms. Following the same RL 
philosophy, Q-learning seeks to solve optimally any specified 
Markov decision problem via a Q function. Q-value can be 
calculated by (9) listed in the algorithm below: 

Algorithm 1: Q-learning Algorithm 

 

Begin  

Initialize Q (s, a) arbitrarily 

Initialize s 

    Repeat  

      Select a’ From s’ using rule resulting from Q; 

      Take action a, observe r, s’; 

      Q (s, a) = Q(s, a) + α[r +γ(Q(s’ ,a’) - Q(s, a))];           (9)                                                                                                 

       s = s’; 

   Until s is final state; 

End. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 8, 2018 

550 | P a g e  

www.ijacsa.thesai.org 

IV. PROPOSED WORK 

In this section, we propose the fuzzy hybrid algorithm for 
solving the problem of scheduling tasks on heterogenous 
distributed machines. Next, we present a case study and show 
the efficiency of the proposed hybrid method. 

A. Architecture Description 

This study purposes to solve a scheduling problem on 
heterogenous parallel machines. An effective scheduling 
algorithm plays a significant role in an effective supervision of 
the grid and so in reducing the maximum completion time.  In 
our suggestion, the load balancing is reached by using a fuzzy 
hybrid algorithm and a hierarchical mobile agent system. 

As shown in Fig. 1, five types of mobile agents are engaged 
in our proposal: The Producer-Agent, the Tester-Agent, the 
Dispatcher-Agent, the Controller-Agent and the Worker-Agent.  
The Producer agent is the one that characterizes the creators of 
tasks as: web application, mobile application, embedded 
system (IOT), expert agent (human) and so. The Tester-Agent 
approximate by previous experiments the execution time of 
novel tasks. The Dispatcher agent is a type of central manager 
of the grid and is in charge for distributing new arrival tasks 
among available workers.  Controller-Agent is responsible for 
continuously monitoring the status of the workers and Worker-
Agent performs the tasks received from the dispatcher. 

Each machine that seeks to join the grid, at the 3rd layer, as 
a worker node to participate on the computation must follow 
these three steps called referencing phase [26]: 

1) Send a request to the dispatcher to join the workers. 

2) Receive and perform the referencing task: T0. 

3) Communicate to the Dispatcher the results of T0 

execution: Li, Pi, NBCi. 

 
Fig. 1. Framework Architecture [26]. 

B. Proposed Fuzzy Hybrid Algorithm: FHA 

The design of the proposed fuzzy hybrid algorithm is 
inspired from the combination of Q-Learning and Ant Colony 
algorithms. In this method, the hybrid algorithm performs in 
two parallel phases. In the first phase, ant colony algorithm 
involves a set of artificial ants acting parallel searches on 
network links between Dispatcher and resources. Each ant Ai 

receives from the controller machine, belonging on its network 
link, the state si(t) of the worker Mi. All ants <Ai>i=1..N are 
inside the Dispatcher node and calculate  Pdi(t) according to 
(10). 
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Where: 
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Ri(t) refers to the pheromone deposited on the network link 
connecting the Dispatcher with the worker machine Mi. It’s 
also refers to the reward of the worker machine Mi at time t. 
The Dispatcher rewards powerful machines by a positive value 
and discourages weak machines by a negative value. The 
rewards and penalties are continuously calculated in order to 
supply the Q-Learning by the updated values to select the 
appropriate worker. 

To measure the worker reward, fuzzy logic process is 
implemented by following in order of these three steps: 

1) Fuzzification of Input: The first step in the fuzzy 

inferencing method is the fuzzification. It consists to convert 

crisp inputs into fuzzy inputs. Crisp inputs are precise inputs 

calculated in real time by the Dispatcher. As shown in Fig. 2, 

Pdi(t) and θPi(t-1) are the two measured crisp inputs passed 

into the Fuzzy system for treatment to calculate associated 

crisp output: reward. 

In addition, it is important to note that θPi (t-1) refers to the 
execution time of each node in the last previous schedule. This 
parameter shows the performance of each node in the history 
and is considered important next to Pdi (t) to calculate the value 
of the worker's reward. 

For each crisp input, a membership function is associated. 
The two following figures: Fig. 3 and 4 shows the curve of 
membership functions for : “Node rapidity” and “Node state”. 

Regardless of the worker historical, a value of Pdi(t) that 
tends to 1 indicates that the worker Mi is the most candidate 
likely to receive the current task. This also shows that Mi is the 
most under loaded among all the machines in the grid. 
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Fig. 2. Input-Node Rapidity. 

 

Fig. 3. Input-Node State. 

 

Fig. 4. Output-Node Reward. 

The fuzzy system output is a result of all the inputs and the 
rules. Fig. 4 shows the curve of membership functions for the 
output: Node reward. 

2) Fuzzy Inference Process-Rules: Fuzzy inference is the 

procedure of expressing from specific inputs, an output by 

using fuzzy logic. This process implies membership 

Functions, Logical operations, and If-Then Rules. The nature 

of the rules is the most important parametrization of fuzzy 

logic systems. It allows concluding the output based on the 

inputs and the rules. Table II shows the list of fuzzy rules 

employed to capture the imprecise methods of worker 

rewarding. 

TABLE II.  IF THEN-RULES 

If-Then Rules 

1 
if node state is (very overloaded or overloaded) and node rapidity is 

(slow or normal) then node reward is very bad 

2 
if node state is normal and node rapidity is (slow or normal) then node 

reward is bad 

3 
if node state is normal and node rapidity is speed then node reward is 

good 

4 
if node state is underloaded and node rapidity is slow then node reward 

is bad 

5 
if node state is underloaded and node rapidity is normal then node 

reward is good 

6 
if node state is very underloaded and node rapidity is (slow or normal) 

then node reward is good 

7 
if node state is (underloaded or very underloaded) and node rapidity is 

speed then node reward is very good 

3) Defuzzification: Defuzzification is the last step that 

returns crisp output from the fuzzy sets. There are several 

types of defuzzification methods. The following are the well-

known methods: Center of Sums Method (COS), Center of 

gravity (COG) / Centroid of Area (COA) Method, Center of 

Area / Bisector of Area Method (BOA), Weighted Average 

Method and Maxima Methods. 

The COG defuzzification is more commonly used fuzzy 
mathematics method; it defines the output as corresponding to 
the abscissa of the center of gravity of the surface resulting 
from the combination of the conclusions and the rules in order 
to apply the output found to the original problem. 

At each computation of Pdi(t), the reward is calculated by 
using COG defuzzification as follows: 

Hence:
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In the inspired ACO algorithm, the smell of pheromone, as 
shown in (13), has a direct effect on the calculation of future 
rewards by the ants. Updating pheromone means that even if a 
machine has a favorable reward, it does not prevent the 
dispatcher from continuously reviewing its workload in order 
to assign it a new value proportional to its state among the 
other resources. In the second phase, Q-Learning is used to 
search an optimal action-selection strategy for the tasks 
allocation. Based on the immediate reward         , the agent 
Dispatcher updates its estimate for Q by its latest observation 
from the grid environment. It calculates Qi for each machine Mi 
according to (14). Then, it selects the machine having the great 
value of Qi for the current task. 

))),()','((max)((),(),( '1 iittaiiitiit asQasQtrasQasQ             (14) 

The grid manager executes parallelly both collaborative 
algorithms to solve the problem described in this work. Ants 
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are used to calculate reward and Q-Learning is used to 
schedule the current task to the appropriate worker. 

V. PERFORMANCE EVALUATION AND DISCUSSIONS 

In this section, the configuration of the used resources and 
the results obtained from the fuzzy hybrid algorithm test are 
described and presented. 

The entire system is developed in Java and is tested on a 
cluster of 10 heterogenous workers. The proposed load 
distribution process purposes to deploy the agent features to 
develop a self-directed organization by means of a real multi-
agent system based on the JADE platform (Java Agent 
Development Framework). 

The associated scheme aims to build a multi-agent system 
to schedule jobs on a cluster of 10 heterogeneous machines. 
The used method is based on the intelligent agents, which must 
be able to delegate specific tasks. 

The configurations of the 10 heterogenous workers is 
determined by executing a referential task T0 by each machine 
before joining the grid. The machines have four distinct 
capacities: Pi ,Li ,NBCi .The scheduler must take into account 
the heterogeneity of node capacities before making scheduling 
decisions. 

A. Referencing Phase 

In this test example, there are ten heterogenous worker 
nodes that are shown in Table III. These worker configurations, 
shown below, are determined by executing a referential task T0 

[26]. 

Note that: 

θi: Total Time required to perform T0 . 

θPNi: Total Time required to perform T0 on Node 
Ni(i=1..n). 

Li= θi:- θPNi               (15) 

Pi is inversely proportionate to θPNi . Pi=10
3
/ θPNi             (16) 

TABLE III.  PARAMETERS CALCULATION BY REFERENCING PHASE 

Node i Pi (ms) Li (ms) NbCi Reward: 

0 80 2 4 1 

1 150 10 2 1 

2 120 8 1 1 

3 70 10 4 1 

4 100 8 8 1 

5 90 10 2 1 

6 160 3 1 1 

7 170 5 16 1 

8 120 1 2 1 

9 145 3 4 1 

B. Q-Learning and ACO Parametrization 

The performance metric in searching optimum results 
depends principally on the parameterization of both Q-
Learning and ACO operators. 

The best Q-Learning operators found are shown in 
Table IV. 

TABLE IV.  BEST PARAMETER SETTINGS OF THE Q-LEARNING OPERATORS 

  

0.3 0.4 

The best ACO operators found are shown in Table V. 

TABLE V.  BEST PARAMETER SETTINGS OF THE ACO OPERATORS 

            

3 3 3 5 2 

C. Load Balancing Theoretic (LBT) 

Theoretically, the load balancing can be calculated for a 
giving system S, having at time t, N distributed resources and 
an overall execution time T, each resource must have a 
workload of execution time around the theoretical value: 
LBT=T / N which is impossible experimentally [26]. 

D. Scheduling Test by using Fuzzy Hybrid Algorithm (FHA) 

The test experiments were generated using a set of NbT 
heterogenous tasks (NbT= 1000). To evaluate and measure the 
system performance, FHA algorithm is put under dissimilar 
system loads complexity, we select randomly for each task Ti: 

{
                                   

                                             
 

Our hypothesis is tested by making a comparative 
experiment with the results obtained with scheduling by using 
Ant colony optimization ACO [25] and by Q-Learning QL [26] 
under the same controlled configurations. 

The scheduling findings are as follows: 

Table VI shows the distribution results by using ACO, Q-
learning, FHA method, whereas Fig. 5 shows a comparison 
between their curves duration. 

TABLE VI.  DISTRIBUTION RESULTS BY USING ACO, Q-LEARNING, FHA 

Node Ni 
θPi(ms) 

FHA 

θPi(ms) 

Q-L 

 

θPi(ms) 

ACO 

 

0 70694609 91214279,5 50694609 

1 90009970 56255662 40009970 

2 40009970 37788468 70171256 

3 60171256 34039604,5 90171256 

4 60171256 36351290 41397431 

5 143171256 42744272 110171256 

6 78018383 148449863 58018383 

7 129563908 89091486,9 149563908 

8 55679447 165171256 65679447 

9 85106444 99118657,5 55106444,3 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 8, 2018 

553 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 5. Comparison Between ACO, Q-learning and FHA Curves Duration. 

We use the ratio   to assess the performance of proposed 

method FHA. The   is expressed as follows. 

LBT

FHA
FHA




              (17) 

In this section, as shown in Fig. 5, the performance of FHA 
algorithm is tested in comparison with ACO and QL 
algorithms, which are two of the well-known scheduling 
methods for Heterogenous distributed systems as mentioned in 
[25, 26]. 

Table VII shows the ratios calculated at the end of each 
scheduling of 1000 tasks respectively by FHA, ACO, QL. 

Clearly, it is shown that the proposed FHA method allows 
the dispatcher to schedule tasks among the resources much 
more efficiently than the ACO and QL methods. 

The relevant question is whether the system will react in 
the same way and the same optimality to more complex and 
more heterogeneous tasks. The answer is of course no, we will 
not always find the same ratios since it is an np hard problem. 
Hence the need to develop the practice of artificial intelligence 
to avoid the repetition of the same scheduling errors and to 
master as possible the optimal control of all available 
resources. Looking forward, our goal is to be focused on deep 
learning through the experience accumulated during scheduling 
already realized, which allows the dispatcher to review 
continuously its strategy and then to reduce the total tardiness. 

TABLE VII.  CALCULATED RATIOS: FHA
, ACO

, QL  

FHA
 ACO

 QL
 

1.85 1.95 2.14 

VI. CONCLUSION 

In this paper, we have developed a Fuzzy hybrid method 
called FHA to solve the problem of tasks scheduling. For 
efficiency purpose, the proposed Framework simultaneously 
applies two algorithms that solve the same problem. The aim of 
the proposed hybrid model is to combine the effectiveness of 
Q-Learning and ACO to reduce the overall execution time and 
then comes imbalance among available resources. The 
experiment results showed that the proposed hybrid algorithm 
has achieved a perfect convergence in terms of the load 
balancing among available nodes in grid as well as improving 
the optimal solution. 

The proposed method can be extended to hybridize other 
metaheuristics with RL algorithms in order to minimize as 
possible the total tardiness. 
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