
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Formal Specification of Memory Coherence Protocol

Jahanzaib Khan, Muhammad Atif,
Muhammad Khurram Zahoor Bajwa, Muhammad Sohaib Mahmood

Department of Computer Science
and Information Technology

The University of Lahore

Sobia Usman
Department of Computer Science
COMSATS University Islamabad

Lahore Campus

Abstract—Memory coherence is the most fundamental re-
quirement in a shared virtual memory system where there are
concurrent as well as loosely coupled processes. These processes
can demand a page for reading or writing. The memory is called
coherent if the last update in a page remains constant for each
process until the owner of that page does not change it. The
ownership is transferred to a process interested to update that
page. In [Kai LI, and Paul Hudak. Memory Coherence in Shared
Virtual Memory Systems, 1986. Proc. of Fifth Annual ACM
Symposium on Principles of Distributed Computing.], algorithms
ensuring memory coherence are given. We formally specify these
protocols and report the improvements through formal analysis.
The protocols are specified in UPPAAL, i.e., a tool for modeling,
validation and verification of real-time systems.

Keywords—Memory coherence; formal specification; shared
memory; address space; analysis

I. INTRODUCTION

In a loosely coupled multiprocessors system, virtual mem-
ory is useful due to its parallel infrastructure instead of using
memory hierarchy. Application programs can use the shared
virtual memory just as they do the traditional virtual memory.
The data can be naturally migrated between processors on
demands because the shared virtual memory discussed in
[1] is not only pages data between physical memory and
disk but it is also pages data between physical memory and
individual processors, as shown in Fig. 1. The shared virtual
discussed in [1] provides address space which is shared among
all processors in the loosely coupled distributed memory
multiprocessors systems. As the shared virtual memory on
the loosely coupled multiprocessors has no physically shared
memory and the communication cost between processors is
nontrivial. Thus the conflicts are not likely to be solved with
negligible delay [2]. The problem that Kai Li faced in building
the shared virtual memory was memory coherence problem
and in [3] Kai Li et al. are focusing on memory coherence
problem for shared virtual memory and they provide a number
of algorithms as a to solve memory coherence problem. These
algorithms include the Central Manager algorithm in which
the manager is just like a monitor. The second Algorithm
is Improved Central Manager Algorithm. The detail of these
algorithms is provided below. We investigate the algorithms
with respect to their functional requirements. Our approach for
formal verification is based on model-checking. We formally
specify the algorithms using UPPAAL. This is comprehensive
analysis of the algorithms provided in [1] along with the
verification of detailed functional requirements. We give the
formal specification of algorithms in functionalism: the timed
automata language of UPPAAL [4].

Fig. 1. Shared virtual memory mapping [3].

A. Memory Coherence

A coherent memory means the value returned by a read
process is always the same as the value is written by the most
recent write process to the same address. In [3] the algorithms
for memory coherence are presented. Two of them are:

1) Centralized Manger Algorithm.
2) Improved Centralized Manager Algorithm.

Each algorithm has the following four basic components:

• Read Server: It provides a page as read only.

• Write Server: It provides a page for writing.

• Participant: A process that is owner of some pages
or demands pages for reading/writing.

• Centralized manager: It keeps record of all the pages,
like who is owner of what and who has taken a page
for reading/writing. It is also responsible for changing
ownership of a page.

B. Centralized Manager Algorithm

The Central Manager Algorithms maintains a table called
info table having tree fields.

1) The Owner field contains the processor that is owner
of the page and it is the processor which has most
recently performed the writ operation on that page.

2) The copy-set field contains the list of processors
having the copy of the page.

3) The Lock field to synchronize the operation.

Each process has also a table called PTable having the
fields: access and lock [5]. This table keeps the information
about the accessibility of the page on the local processor. In
this algorithm there is no fixed owner of the page because

www.ijacsa.thesai.org 641 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 2. Client Process.

the owner is considered to the processor who has performed
the most recent write operation on the page. After the write
operation an invalidation message is sent to all processors
having the copy-set of that specific page [6].

Both PTable and info Table have page based locked and
when there are more than one process waiting for read or write
operation then this locking mechanism prevents the processor
to send request [7].

C. Improved Centralized Manager Algorithm

The main difference in Central Manager and Improved
Central Manager is the elimination of confirmation operation
to manager [2]. The locking mechanism not only deals with
local requests but also with remote requests. Compare to the
cost of read fault in the Central Manager Algorithm it saves
one “send” and one “receive” per page for all operations [8].

II. RELATED WORK

In [9] author is using state model checker SPIN and
he is combining the results of this checker with a testing
approach which is model based to support embedded system
validation. The author is using Siemens SIMATIC S7-400H a
programmable logic controller as an example and he claimed
that his model covered crucial part of this controller. The
author concluded that formal verification is not suitable as a
standalone method. He suggested that it should be combined
with a suitable validation method such as testing to achieve
maximum benefits. In [10] the author is verifying Chinese
Lunar Rover control software, which is a real time multitasking
embedded software. The purpose of the paper is to verify that

system is satisfying a real time functional property. For this the
author modeled an application and used physical environment
as a timed automata and he is analyzing the system using a
model checker of modeled in UPPAAL. He concluded that
his model was able to trace and track down the undesired
behavior in the system [11]. In [12] the author is providing a
methodology to extract models for a wireless sensor and then
he is using UPPAAL for verification of functional and non-
functional properties of the developed model. In this paper the
author claimed that the basic properties which are hold by a
node has not been performed by any wireless network and in
this research work he is addressing this individual node.

III. FORMAL SPECIFICATION OF THE MEMORY
COHERENT PROTOCOL

A. Main Process

The protocol is specified with three parallel processes to
circumvent state space problem. These processes communi-
cates with each other and are called by other processes. The
protocol comprises the following sequence of actions.

1) Check the page is not locked before request (Guard).
2) Locking the page for which request has been gen-

erated for read or write (Boolean data structure is
used).

3) Sending request to server.
4) Adding the process in the copy-set of the page after

it has received the request for read or write (array is
used).

5) Update the Node and Requested Page variables (In-
tegers).

www.ijacsa.thesai.org 642 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 3. Read Server Process.

6) Process is checked whether it is owner of the page
(Boolean).

7) All the copy-sets of the page are invalidated in case
of write fault.

8) Confirmation of successful operation is sent to the
manager.

9) At completion of operation page is unlocked at man-
ager as well as at owner end.

B. Channels

Synchronization of process is done using channels. Chan-
nels receive messages from one process and deliver these
messages to other process. There are many types of channels
used for synchronization of communication which includes:

1) Unicast channel: This channel is mostly used in
handshaking of the processes.

2) Multicast channel: This channel is used for broad-
casting a request in system.

3) Urgent channel: At urgent location time progress may
not be made. At this location interleaving with normal
states is not allowed

4) Committed channel: At committed state the possible
transition is only one going out of committed state
and the committed state has to be left immediately.

How these channels are working in our model is explained
below.

C. Central manager algorithm

1) readFault [4][pages] is a channel used to send request
by client as sender and received by Server where 4
is total number process on which fault can occurred.

2) managerRFault [4][4][totalPages] is a channel which
is triggered by the manager if and only if the faulting
process is manager itself. Manager has information
about all pages and the owner of the pages there for
manager will send the request to the owner of the
page directly and page number is also sent along with.

3) sRead[4][4][totalPages] is a channel used to send
request to owner of the page by the manager if read
fault occurs on non-manager node. It is sending the
requested node address and the page demanded by
that node.

4) serveRead[4][totalPages] is a channel triggered by the
owner of the page to the requesting process insure
that access for read is granted.

5) confirmation [4] is a channel used to send confirma-
tion to the manager for the completion of operation
the id of the requesting process is also sent with
confirmation.

6) writeFault[4][totalPages] is a channel used to send
request by client to the server to grant access for
writing in the page and if access is granted the
requesting process is also declared temporarily owner
of the page. On the completion of this operation
all the copy-sets of the page are invalidated by the
manager of the system.

www.ijacsa.thesai.org 643 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 4. Improved Read Server Process.

Fig. 5. Write Server Process.

7) sWrite[4][4][totalPages] is a channel used to send
request to owner of the page by the manager if write
fault occurs on non manager node. In this channel
address of requested node and the page number is
also sent as parameters.

8) serveWrite[4][totalPages] is a channel used by the
owner of the page for sending the paged to the
requested node for writing. After sending the page the
lock of page is removed both by owner of the page
and manager of the system and now it is available
for new operation.

9) writeConfirmation[totalPages] is channel used to send
the confirmation to the manager of system by the
requesting node to assure that it has been granted the
access for writing the page.

D. Declarations

Global declarations are made to access the variables
throughout the system. The global variables used in our model
are placed here.

const int totalPages=4; This describes the total number
pages for which read or write request can be generated by
the processes.

chan readFault[4][totalPages] and chan write-
Fault[4][totalPages] are unicast channels and are used
to send request to the manager of the system to grant the
access for their request.

chan serveWrite[4][totalPages], channel is triggered by the
owner of the page to send the page for writing purposes to the
requesting node.

serveRead[4][totalPages], channel is used to send the
requested page to the requesting node.

sRead[4][4][totalPages], channel is used to send the re-
quest to the owner of the page to send the page for reading.

sWrite[4][4][totalPages], channel is used to send the page
to the requesting node for writing by the owner of the page.

chan confirmation[4], channel is used to send confirmation
of receiving a page to the manager.

managerRFault[4][4][totalPages], channel is used when
read fault is occurred on the node which is also manager of
the system.

serveReadManger[totalPages], channel is triggered by the
manager to request the owner of the page to send the required
page to the manager.

writeConfirmation, channel is used to send confirmation
message to the manager for write fault.

bool Lock[8] describes the Lock that is used to lock
the page. Lock is made true before serving the page to the
requesting process and it is made false when page is served
by the owner of the page.

bool infoLock[8], the information of the page is on manager
end and before the request is sent to the owner of the page
for reading or writing the page the information of the page is
locked by making the infolock true and after the it is made

www.ijacsa.thesai.org 644 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

false by the manager after receiving the confirmation message
by the requesting process.

int loop,loop2, are used in invalidateCopySet function.

int [-1,7] pTable[8][8]={
0,1,1,-1,1,-1,-1,0,
0,1,1,-1,1,-1,-1,0,
1,1,1,-1,1,-1,-1,0,
1,1,1,-1,1,-1,-1,0,
2,1,1,-1,1,-1,-1,0,
2,1,1,-1,1,-1,-1,0,
3,1,1,-1,1,-1,-1,0,
3,1,1,-1,1,-1,-1,0 }

This array contains page table information maintained by
the owner of the page. Each row in the array is representing
the page number i.e. row number 1 is showing the information
about the page number 1 and row number 2 is showing the
information about page number 2 and so on for all the other
rows in the array. The columns of the array are showing the
attributes of the pages which are explained as under.

First column is representing the owner of the page i.e in
row number 1 we have written the 0 in first column which
means that the owner of the first page is 0 process and in 7th
row there is 3 in first column which shows that the owner
of 7th page is process number 3. It is hard coded because in
the protocol the ownership is not changed it is only shifted
temporarily in write fault case. Second column in the table is
representing the information about the access of the page it can
be either read or write if the access of the page is marked as
read it is made 1 and for write it is made 2 and if the page has
both read and write access it is then made 3. Third column in
the table is representing the lock information of the page lock.
If it is 0 then it means that page is locked and if it is 1 it shows
that page is not locked it is unlock and available for operation.
Column number 4 to the column number 7 is representing the
information about the process having the copy-set of the page
i.e 4th is for first process and 5th is for second if it is 1 against
any process this shows that the specific process has the copy-
set foe that page and if it is 0 it shows that the process has
not copy-set of that page. Column number 8 is representing
information about either manager has copy-set of the page or
not. If it is 1 it shows the manager has the copy-set of that
page and if it is 0 it shows that manager has not the copy-set
of the process.

int[-1,7] copyset[8][5]={
1,1,-1,-1,0,
-1,-1,-1,-1,0,
-1,-1,-1,-1,0,
-1,1,-1,-1,0,
-1,-1,-1,-1,0,
-1,-1,-1,-1,0,
-1,-1,-1,-1,0,
-1,-1,-1,-1,0 }

This array represents the copy-set table. In this table
each row is representing the page number i.e row number 1
represents page number 1 and row number 2 is representing
page number 2 and so on for all rows in the table and columns
are representing the other properties of the pages which are as
follow.

Columns are representing the processes having the copy of
the page. Value 1 means that a particular process has the copy-
set of the page and it is maintained in a sequence such as if in
row 1 at first column the value is 1, it means process number
1 has the copy of page number 1. Similarly in row number
1 and column number 2 value 1 means that process number
2 has the copy of the page number 1. Moreover value 1 in
row number 4 and column number 2, represents that copy of
the page number 4 is also available on process number 2. The
values -1 means that the process does not have the copy-set
of corresponding pages.

Because we are using just four processes, therefore, we
require just four columns to cover all the processes additionally
the 5th column is used for the manager of the system if the
manager has the copy-set of any page then its value is 1 and
the value 0 means that the manager has not the copy-set of
the particular page.

int[-1,7] iTable[8][7]={
0,1,1,-1,-1,-1,0,
0,1,1,-1,-1,-1,0,
1,1,1,-1,-1,-1,0,
1,1,1,-1,-1,-1,0,
2,1,1,-1,-1,-1,0,
2,1,1,-1,-1,-1,0,
3,1,1,-1,-1,-1,0,
3,1,1,-1,-1,-1,0 }

This array is page table information maintain on the by
the manager. Each row in the array is representing the page
number i.e. row number 1 is showing the information about the
page number 1 and row number 2 is showing the information
about page number 2 and so on for all the other rows in the
array. The columns of the array are showing the attributes of
the pages which are explained as under.

First column is representing the owner of the page i.e in
row number 1 we have written the 0 in first column which
means that the owner of the first page is 0 process and in 7th

row there is 3 in first column which shows that the owner
of 7th page is process number 3. It is hard coded because in
the protocol the ownership is not changed it is only shifted
temporarily in write fault case. Second column in the table is
representing the information about the access of the page it can
be either read or write if the access of the page is marked as
read it is made 1 and for write it is made 2 and if the page has
both read and write access it is then made 3. Third column in
the table is representing the lock information of the page lock.
If it is 0 then it means that page is locked and if it is 1 it shows
that page is not locked it is unlock and available for operation.
Column number 4 to the column number 7 is representing the
information about the process having the copy-set of the page
i.e. 4th is for first process and 5th is for second if it is 1 against
any process this shows that the specific process has the copy-
set foe that page and if it is 0 it shows that the process has
not copy-set of that page. Column number 8 is representing
information about either manager has copy-set of the page or
not. If it is 1 it shows the manager has the copy-set of that
page and if it is 0 it shows that manager has not the copy-set
of the process.

int[0,7] owner[4][2]={ 0, 0,
1, 1,

www.ijacsa.thesai.org 645 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 6. Improved Central Manager.

2, 2,
3, 3 }

This array is used to store the information about the owner-
ships of the pages. In the array row number is representing the
number of the page and the column values are representing the
owner values of the pages i.e owner of first two pages (page
number 1 and page number 2) is process number 0 there for
in row number 1 and row number 2 there is 0 values and the
owner of page number 3 and 4 is process number 1 there for
the values of row number 3 and 4 are 1 and same procedure
for remaining pages.

E. Methods or Functions

Following are the methods used:

//pid is process id
//x is page number
bool isOwner(int pid,int x)
if((pid == 0 or pid == 1)and x == 0)
return true;
if((pid == 2 or pid == 3)and x == 1)
return true;
if((pid == 4 or pid == 5)and x == 2)
return true;
if((pid == 6 or pid == 7)and x == 3)
return true;
return false;

This function is used to find weather the process is owner of
the page or not. It is taking process number and page number
as arguments and using if statement to compare the value of
process with the owner of the page value and if it matches it
return true and if it does not match with owner value it returns
false as its return type is bool (a Boolean data type). At the
last statement if any if statement is not satisfied then it returns
false a default value in case of process is not owner of the
page. Infect it is using exhaustive search algorithm to find the
owner value it is comparing the process and page id with all
the possible combinations and then returning the value.

void readAccess(int pid, int x)
pTable[pid][x+3] = 1;

This function is used to grant access for reading to the
requesting process against the required page. It is taking
process id and page number as arguments and it is making
the change in pTable and changing its access bit discussed
earlier in this paper to 1 which means the process have read
access of that page. As its return type is void there for it is
returning nothing just making the change in pTable.

void haveCopyset(int p, int n)
pTable[p][n+3]=1;

This function is used to make the entry of a process in
the copy-set of the page. It is taking process number and page
number as arguments. This function is returning nothing it is
just making the entry in pTable. This function is used in read

www.ijacsa.thesai.org 646 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

operation according to the protocol discussed in this paper if
any process has read the page it must have its copy and page
table is maintained for this purposes any process which has
read the page is entered in the copy-set of the page in pTable.

int askForOwner(int p)
if(p == 0 or p == 1)
return 0;
else if(p == 2 or p == 3)
return 1;
return -1;

This function is used to find out the owner of the page. It
takes page as an argument and returns the owner of the page
and returns an integer value which is owner of page which it
received. This function is used in read fault and in as well as
in read fault. if it receive the page number who has no owner
it returns -1. The following method is used to invalidate all
copy-set of the page. It takes the page number as an argument
and returns nothing. It is making the change in the pTable and
changing all the values of the page against copy-set bit to -1.
According to the protocol if any process writes the page then
it‘s all copy-sets must be invalidated by the owner of the page
and as well as by the manager of the system as an information.
Loop is used because in pTable according to the page there is
series of bits showing the processes having the copy-sets of
that page. We are just putting -1 in place of that process which
shows that the page has no copy-set now.

void invalidateCopyset(int p)
for(loop=0;loop¡4;loop++)
pTable[p][loop+3]=-1;

The following method is used in case when the process on
which read or write fault occurs is the manager of the system.
It is taking the page number as an argument and making the
change in copy-set and also in ITable. This method is used
only on the manager end and only the information of the page
is updated and the values against the manager bits are updated
in the tables.

void managerUpdat(int p)
copyset[p][4]=1;
iTable[p][6]=1;

F. Improved Central Manager Algorithm

The primary difference in central manager and improved
central manager is that ownership of page is moved on
individual owners so confirmation operation is eliminated.

G. Automaton of Client Process

The automaton of client process is shown in Fig. 2. The
client process has 11 states and they are named as initial
and it is denoted by double circle and other stages are read-
Fault, managerReadFault, serveRead, confirmation, pageLock-
ing, readServe, accessRead, writeFault, writeConfirmation and
requestToOwner. The initial stage is used to send the request
for read fault and write fault request to owner of the page and
serve read requests are also generated from initial stage. The
major actions performed by the process are described as. The
automaton for client process is depicted in Fig. 2. The initial
state is named as Client. The client process has two states.
The first state is initial state and the second state is committed

state, which is used with action of sending repaired packets to
end receivers. There are overall four major actions described
as:

1) Sending request to read server for read fault of the
process against a specific page.

2) Receiving request from server as an owner of the page
to serve a page for reading.

3) Send the page to the requesting node for reading.
4) Receive the page form owner for reading purposes.
5) Sending the confirmation after receiving the page

from owner.
6) Receiving manager read fault request is fault is oc-

curred on the manager of the system.
7) Sending request to write server for write fault of a

process for a page.
8) Receiving request from server as an owner of the page

to grant access of writing in a page.
9) Sending a page for writing purposes to the requesting

process.
10) Receiving page from owner of the page for reading.
11) Sending confirmation to the manager after receiving

the page.

The process is using two functions which are described as:

1) Changing the access of the page to read for specific
process.

2) Asking a process to weather it is owner of the page
or not.

To communicate with the read server readFault[] chan-
nel is used. To communicate with write server writeFault[]
channel is used. Client process uses the channel sRead[]
receive the request as an owner of the page to serve the
page to the requesting process. If the page fault occurs on
manager process the managerReadFault[] channel is used by
the client process. Client process uses the channel readserve[]
to send the required page to the requesting process. Client uses
confirmation[] channel to send the read operation completion
confirmation to the manager process. Client process uses
writeFault[] channel to communicate with write server. Client
process uses the channel sWrite [] to receive the request as
an owner to serve the page to the requesting process. Client
process uses the channel servewrite[] to send the required
page to the requesting process. writeConfirmation[] Chan-
nel is used by the client process to send the confirmation
of completion of write operation. To perform the first step
read fault process, the variable !Lock[x] is used to check
weather page is locked or not and operation is performed
only against unlocked pages. The variable Lock[x]=true is
used to lock the page by the client process for which read
fault or write fault has been occurred so that it should not
be accessed by other process for operations. The variable
Lock[pageDemanded]=false is used to unlock the page which
is locked before page is served for reading or writing purposes.
The function readAccess(requestNode,pageDemanded) is used
by the client process (Owner of the page) to grant access
for read to requesting process. The variable Node:int[0,2] is
used at receiving side and passed to request Node variable
and after word it is used to send confirmation message
to the manager and also used as a parameter to readAc-
cess(requestNode,pageDemanded) function. The variables rN-

www.ijacsa.thesai.org 647 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

Fig. 7. Improved Write Manager.

ode:int[0,2],pDemanded:int[0,3], Owner:int[0,2] are used on
by the owner on receiving side and are passed to request node
and page demanded respectedly and all of the three variables
are used as parameter to sWrite[Owner][rNode][pDemanded]?
Channel.

These variables are also used in channel to
send page to the requesting process using channel
sWrite[Owner][rNode][pDemanded]? For write operation.

In the model shown above the client process is shown in
figure. In the first step of read fault is the guard! Lock[x] is
used to check the page and insure that it must be unlocked
and process locks the page using update Lock[x]=true. In
second step of synchronous local variables Owner:int[0,2],
rNode:int[0,2], pDemanded:int[0,3] are used and passed to
function isOwner(pageDemanded,requestNode) to check the
owner ship of the page. These variables are also used in
the readAccess(requestNode,pageDemanded) function by the
owner of the page to grant the access of reading to the
requesting process in desired page. In third step of read fault
the channel serveRead[requestNode][pageDemanded]!, is used
by client to send the required page to the requesting process. in

the fourth step of the client process there are two possible tran-
sitions first if requesting process is not manager then the chan-
nel serveRead[Node][page]? Is executed and if the requesting
process is manager then managerRFault[pid][Node][page]?
Channel is executed. The fifth step read fault process in the
client process is confirmation[requestNode]! In which request-
ing process sends the confirmation of receiving the page to
the manager of the system and it unlocks the page which
was locked at the starting of the operation using the update
Lock[pageDemanded]=false.

While in write fault the first step of synchronization process
is the guard !Lock[x] that is used to check the page and insure
that it must be unlocked and process locks the page using up-
date Lock[x]=true. The local variable x:int[0,3] is used to indi-
cate the process on which write fault can occurred and transac-
tion is performed using writeFault[pid][x]! channel. In second
step of the client process synchronization the local variables
Owner:int[0,2], rNode:int[0,2] and pDemanded:int[0,3] are
used and passed to the sWrite[Owner][rNode][pDemanded]?
channel to receive the request from write handler by the owner
of page. In third step of the synchronization process of write
fault the channel serveWrite[requestNode][pageDemanded]! is

www.ijacsa.thesai.org 648 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

used to send the page to requesting process for writing. At
fourth step of write fault process there are two possible options
available first if the requesting process is the manager of
system then page is received and secondly if requesting node
is not the manager then the channel serveWrite[Node][page]?
is used to receive the page from owner of the page. At fifth
step of write fault in client process confirmation message is
sent to the manager by requesting node using the channel
confirmation[requestNode]!, and required page is unlocked
using update Lock[pageDemanded]=false.

H. Automaton of Read Server

The automaton of read server is depicted in Fig. 3. The
initial stage is denoted by double circle. The read server has 8
states. First one initial state and named as as ReadServer and
other states are handleReadFault, InfoLock, nonManagerRF,
RecieveConfirmation, InfoLock,padetManager and UnLock-
Info. There are over all two functions described as:

1) haveCopyset(pageDemanded,requestNode)
2) managerUpdat(pageDemanded)

The read server plays main role between client process and
server process. It communicate with client process and server
as well. It receives request from client of faulting page and
checks the availability of the page. If page is available for the
operation then the variables page:int[0,3] and Node:int[0,1] are
initialized and passed to the variables pageDemanded and re-
questNode respectively. In the mean while the demanded page
is locked using the Boolean variable infoLock[page]=true.
After this the read server will check the requesting node
for manager and if it is not manager of system then it will
add the requesting process in the copy-set of the page using
the function haveCopyset(pageDemanded,requestNode). After
making the transation the information of the page is locked us-
ing the Boolean variable infoLock[pageDemanded]=false. The
channel sRead[askForOwner(pageDemanded)][request Node]
is used by the read server to send the request the owner of
the page asking it to send the required page to the requesting
process.

After sending request to the owner of the page the
read server will wait for confirmation from the request-
ing process after receiving the page by using the Chanel
confirmation [requestNode]? At the receiving end and af-
ter receiving the confirmation from the requesting process
the information of the page is unlocked using the Boolean
variable infoLock[pageDemanded]=false. If the requesting
node is the manager of the system then at first step the
information of the page is locked using the variable in-
foLock[pageDemanded]=true. At the second step the function
managerUpdat(pageDemanded) is called by the read server
to make the entry in the Ptable in the row of the page (as
discussed earlier) for the manager having the copy-set of the
page. At third step the read server will send the request to the
owner of the page to send the requested page to the requesting
process (the manager) and unlock the information of the page
using the Boolean variable infoLock[pageDemanded]=false.

I. Automaton of Write Server

The automaton of write server is shown in Fig. 5. The ini-
tial stage is double circled and named as Start. The write server

has 8 states. The first one is initial stage and other are Write,
copySetInvalidate, ManagerConfirmation, copySetInvalidate1,
nonManagerWF, RNconfirmation, UnLockPage.

In Fig. 6, the client process of the improved central
manager is given. We can see that the main difference between
the central manager and the improved central manager is that
the later does not send or receive any kind of acknowledgment.

In Fig. 4, the behaviour of read server for the improved
central manager is given. It receives a request for page de-
manding process and operates like a central manager but with
the only difference, that is the requesting process does not send
or receive any acknowledgment.

In Fig. 7, the model of write server is given. It receives
the request from requesting process for writing a page and
operates like the central manager’s write server but with the
only difference, that is the requesting process does not send
or receive any confirmations.

IV. CONCLUSION

Memory coherence is a vital issue in today operating
system. This paper models the read and write process by using
UPPAAL tool. The modeling results highlight the missing
details of the read and write protocols. Modeling encounters
two types of limitations. First is to limit the number of demand
pages, second one to reduce the number of processes. These
limitations prevent the system in generating a very huge state
space and also in avoiding the state space explosion problem.
These limitations are imposed due to limited memory of
the machine. The machine can go out of memory during
verification phase. Models properties are not affected due to
these limitations because a few number of pages and processes
can reflect the behavior of a huge system. This small system is
transparent reflection of a huge system with maximum number
of pages and huge number of processes .

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[2] Y. Feng, L. Zhang, D. N. Jansen, N. Zhan, and B. Xia, “Finding
polynomial loop invariants for probabilistic programs,” in Automated
Technology for Verification and Analysis - 15th International
Symposium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings,
2017, pp. 400–416. [Online]. Available: https://doi.org/10.1007/978-3-
319-68167-2 26

[3] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” in Proceedings of the Fifth Annual ACM Symposium
on Principles of Distributed Computing, ser. PODC ’86. New
York, NY, USA: ACM, 1986, pp. 229–239. [Online]. Available:
http://doi.acm.org/10.1145/10590.10610

[4] A. David, K. G. Larsen, A. Legay, M. Mikuăionis, and D. B. O.
Poulsen, “Uppaal smc tutorial,” Int. J. Softw. Tools Technol. Transf.,
vol. 17, no. 4, pp. 397–415, Aug. 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10009-014-0361-y

[5] J. Li, L. Zhang, S. Zhu, G. Pu, M. Y. Vardi, and J. He, “An explicit
transition system construction approach to LTL satisfiability checking,”
Formal Asp. Comput., vol. 30, no. 2, pp. 193–217, 2018. [Online].
Available: https://doi.org/10.1007/s00165-017-0442-2

[6] W. Shen, G. Li, C. Lin, and H. Liang, “Foundation of a framework to
support compliance checking in construction industry,” in Structured
Object-Oriented Formal Language and Method - 7th International
Workshop, SOFL+MSVL 2017, Xi’an, China, November 16, 2017,
Revised Selected Papers, 2017, pp. 111–122. [Online]. Available:
https://doi.org/10.1007/978-3-319-90104-6 7

www.ijacsa.thesai.org 649 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 8, 2018

[7] A. Legay, D. Nowotka, D. B. Poulsen, and L. Traonouez,
“Statistical model checking of LLVM code,” in Formal Methods
- 22nd International Symposium, FM 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July
15-17, 2018, Proceedings, 2018, pp. 542–549. [Online]. Available:
https://doi.org/10.1007/978-3-319-95582-7 32

[8] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikucionis,
U. Nyman, and A. Skou, “Statistical and exact schedulability
analysis of hierarchical scheduling systems,” Sci. Comput.
Program., vol. 127, pp. 103–130, 2016. [Online]. Available:
https://doi.org/10.1016/j.scico.2016.05.008

[9] A. Ulrich and A. Votintseva, “Experience report: Formal verification
and testing in the development of embedded software,” in Proceedings
of the IEEE 26th International Symposium on Software Reliability
Engineering, ser. ISSRE ’2015. IEEE, 2015, pp. 293–302.

[10] L. Shan, Y. Wang, N. Fu, X. Zhou, L. Zhao, L. Wan, L. Qiao, and
J. Chen, “Formal verification of lunar rover control software using
uppaal,” in Lecture Notes in Computer Science, vol. 8442. Springer,
Cham, 2014, pp. 718–732.

[11] R. Marinescu, H. Kaijser, M. Mikucionis, C. Seceleanu, H. Lönn, and
A. David, “Analyzing industrial architectural models by simulation and
model-checking,” in Formal Techniques for Safety-Critical Systems -
Third International Workshop, FTSCS 2014, Luxembourg, November
6-7, 2014. Revised Selected Papers, 2014, pp. 189–205. [Online].
Available: https://doi.org/10.1007/978-3-319-17581-2 13

[12] M. Hammad and J. Cook, “Compositional verification of sensor soft-
ware using uppall,” in Proceedings of the IEEE 23rd International
Symposium on Software Reliability Engineering, ser. ISSRE ’2012.
IEEE, 2012.

www.ijacsa.thesai.org 650 | P a g e

