
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

12 | P a g e

www.ijacsa.thesai.org

Aesthetics Versus Readability of Source Code

Ron Coleman

Computer Science Department

Marist College

Poughkeepsie, NY, 12601, United States

Abstract—The relationship between programming style and

program readability has never been examined empirically,

although the association has substantial importance for both

pedagogical and industry best practices. This paper studies a

fractal, relativistic measure of programming style called the

beauty factor or “beauty” and puts forward two new hypotheses

of beauty. First, code with increasing beauty tends to be more

readable. Second, beauty measures a unique property in code

called aesthetic value distinct from readability. These hypotheses

are tested on a corpus of 53,000 lines of open source system codes

written by experienced Linux programmers. Statistical

correlation analysis is used on 11 different beauty factors versus

eight different readability models (i.e., 88 experiments total). As

the primary finding, the data show the maximum absolute

statistically significant correlation is ||=0.59 whereas the

absolute median correlation is ||=0.33. In other words, at least

65% of statistically significant variations in beauty cannot be

explained by variations in readability; approximately 90% of

statistically significant variations in beauty cannot be explained

typically by variations in readability. These results lend support

to both hypotheses. The data further shows indentation is more

reliably correlated with readability than mnemonics or

comments and GNU style is more correlated with readability

than K&R, BSD, or Linux styles.

Keywords—Programming style; fractal geometry; readability

―We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially because
it produces objects of beauty.‖ ~Donald E. Knuth, 1974 ACM
Turing Award Lecture [1]

I. INTRODUCTION

In 1979 AT&T Bell Labs released Unix version 7 which
included cb, the C beautifier [2]. A unique tool and the first of
its kind, cb ―beautified‖ programs, that is, reformatted them,
according to rules prescribed by the K&R style [3]. In creating
cb, software engineers did not address the ontology of what is
beauty in code. They instead focused on the epistemology of
what is knowable about such beauty which could be
automated, demonstrated, practiced, and taught. They had
hoped paying attention to sensori-emotional or aesthetic
values in code might also promote readability of code.
However, they were not explicit about this and left the precise
nature of the relationship between aesthetics and readability
assumed and open. The literature frequently confounds
aesthetics and readability as if they are interchangeable (see
for instance [4-6]). Indeed, the long-held, widely taught, and
often repeated justification for good style is to make programs
more readable and presumably, more maintainable [7].

One problem is that this view has never been tested
empirically. Another problem is ontological. Readability is
about understanding code and aesthetics is about appreciating
it, l’art pour l’art. Thus, in principle, conflating aesthetic and
readability is a category mistake. Finally, how different styles
affect cogntive ease or difficulty of grasping code remains
poorly understood. In other words, programmers may assume
on the basis of preference, experience, etc., that one style is
more readable than another but is personal taste as such
supported by the data? The question has never been
investigated empirically.

This paper studies a relativistic, fractal measure of
programming style called the beauty factor (or ―beauty‖ for
short) and puts forward two new hypotheses. First, code with
increasing beauty tends to be more readable. Secondly, beauty
measures a unique property of code, call it aesthetic appeal,
which is distinct from readability. To test these hypotheses,
the paper assesses the beauty and readability scores of a
statistically meaningful number of files and analyzes the
correlations. No correlation denies the first hypothesis. Strong
correlation denies the second hypothesis. Thus, both
hypotheses can be logically true simultaenously only with
weak or moderate correlation. In other words, the
hypothesized aesthetic value of code is not necessarily
completely orthogonal to nor a proxy for readability but a
spectrum of potential.

II. RELATED WORK

Kokol, et al, [8-10] showed that programs contain long-
range correlations in characters and tokens. These researchers
were searching for a fractal metric of software complexity
using lexical analysis of a small sample of randomly generated
Pascal programs. This paper uses a larger corpus of production
C codes and image analysis. Coleman and Gandhi [11]
hypothesized programming style might be related to fractals
since fractals are often associated with beauty [12]. This effort
showed that changes in style were systematically correlated
with changes in fractal dimension. Coleman and Gandhi [13]
proposed a fractal, relativistic model and showed beauty was
weakly to moderately correlated with software complexity in
directions that comported with style recommendations. In
other words, there is virtue in brevity and simplicity in code.
Coleman and Boldt [14] investigated disorder that is often
introduced in code through maintenance and showed beauty
was weakly to moderately anti-correlated with entropy.
Coleman and Rahtelli [15] showed the beauty model predicts
aesthetic value in scientific libraries; in this paper we study
system codes. These investigations of beauty resemble efforts
by researchers who used fractal geometry to assess aesthetic

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

13 | P a g e

www.ijacsa.thesai.org

values in paintings, including Pollock‘s ―action paintings‖
[16-20]; the main technical differences are that this paper
studies code as opposed to fine art and programming style as
opposed artistic style. Beautiful Code [21] deals with
conceptual beauty in the design and analysis of algorithms,
testing, and debugging, topics which are outside the scope of
this paper. Also outside the scope of this paper is the more
general topic of program comprehension, which focuses on
cognitive models to explain how programmers understand
code and the development of tools to aid them [22, 23].

III. THEORY

A. Aesthetic Theory

1) Working Definitions
The subject of aesthetics has a long history of thoughtful

consideration of matters of style and taste dating to ancient.
According to the Stanford Encyclopedia of Philosophy the
term ―aesthetic‖ refers to, among other things, a kind of
heuristic judgement or value called beauty, appeal,
appreciation, virtue, goodness, etc. [24] We use the term
―aesthetic appeal‖ when referring sensori-emotional
judgements as opposed to other forms of appeal. Thus, the
working definition of ―beauty,‖ namely, the measure of
programming style, is a special case of the aesthetic definition.
We say ―beautiful‖ code has measurably more style than
indecorous code. To ―beautify‖ code is to measurably improve
its style according to what we know about well-written code in
terms of layout and structure. To ―debeautify‖ code is to do
the opposite; in fact, there are tools, known as ―obfuscators‖
that use anti-style techniques usually for information security
purposes [25, 26].

2) Immediacy and Disinterest theses Applied to Code
The immediacy thesis maintains that judgements of appeal

are immediate or straightforward through sensory
discernment. [24] For code, this suggests the possibility of
appreciating its form as a work of art, that is, without
attempting to ―read‖ or ―understand‖ its function. This paper
argues (see below) that the rules of judging good
programming style in this way are widely known and firmly
established. So much that these rules can be automated by
programs like cb which reformat target code without regard
for how the target works or even what it does. What matters
foremost, aside from preserving the semantics, is how the
target looks in the end.

The disinterest thesis claims that judgements of appeal are
not self-interested. This is the sense of ―art for its own sake.‖
For code, a programmer could appreciate the rules of a style
like K&R for ―intellectual and emotional satisfaction,‖ as
Knuth described it. [1] Whether K&R or one of the other
styles we study makes the code more readable and how much
is the subject of this paper.

3) Basic Tenets
The beauty model presupposes we know or can know

epistemologically what programmers think—or better, how
they feel—about style. This knowledgebase already exists in a

mature and rich form that can be observed directly, repeatedly,
and systematically in style guides, coding standards,
organizational coding policies, textbooks, research reports,
example codes, blogs, etc. It can also be observed indirectly
through use and side-effects of tools like cb, functions
embedded in modern IDEs for reformatting code code, and
online sites that have codified this knowledge for a variety of
styles and languages. In an observational study, Coleman and
Gandhi [13] surveyed this knowledgebase and identified three
general principles they called ―basic tenets‖ of good
programming style: namely, 1) use white space judiciously; 2)
choose mnemonic names; and 3) include documentation.

4) Beauty Factors
Let S be some source called the control or ―baseline.‖

Then, we have S‘ such that

S’ = T(S) (1)

where T is a semantic-preserving transformation or
treatment. That is, S and S‘ differ only in style. There are two
modalities of T with respect to the basic tenets: beautification
and debeautification. We encode S and S’ separately as an in-
memory bitmap called an artefact. (The fact that it is in-
memory only serves to say it is independent of file format
althought it may for some reasons reside in secondard
storage.) Finally, we measure the fractal dimension of these
artefacts using reticular cell counting (a.k.a., the box counting
dimension), D [27]:

 ()

 ()

(2)

where Nr(S) is the number of components (i.e., cells)
covered by the ruler of size r. (Note that S in the above
equation refers to the artefact of the baseline and not the
baseline itself; we use this form only to simplify the notation.)
Thus, D(S) is the slope of the regression line over different
ruler sizes, r. We similarly measure D‘=D(S’). The beauty
factor model, B, is given by the following equation:

B (S | T) = k log (D / D’) (3)

where k is a constant. When k=10 and the logarithm is base
ten, the units are decibels. B is indicated as follows:

1. If B < 0, the style of S might be improved by T.

2. If B  0, the style of S probably won‘t be improved by
T.

A contrary indication implies T is categorized in a
modality mathematically with –B.

5) Semantic-Preserving Transformations
The tables 1 and 2 give the semantic-preserving treatments

we use in this paper.

TABLE I. BEAUTIFYING TREATMENTS

T Tenet Regime
GNU 1 Apply GNU style [28].
K&R 1 Apply K&R style [3].
BSD 1 Apply BSD style [29].
LIN 1 Apply Linux style [30].
MNE 2 Refactor names to be more mnemonic
REC 3 Add one or more comments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

14 | P a g e

www.ijacsa.thesai.org

TABLE II. DE-BEAUTIFYING TREATMENTS

T Tenet Regime
NOI 1 Remove indents.
R2 1 Randomize indent with 1-2 spaces.
R5 1 Randomize indent with 1-5 spaces.
NON 2 Refactor names to be less mnemonic
DEC 3 Remove all comments.

These transformations are not, nor intended to be,
exhaustive. Rather, they are indicative of transformations in
general and sufficient to test the main hypotheses.

6) Block Artefact Method
The literal artefact method (or LAM) encodes the bitmap

using a fixed width font as S (or S‘) literally looks like itself.
The figure 1 shows the file, hello.c, with its LAM encoding.
We do not use LAM in this paper.

#include <stdio.h>

int main(int argc, char** argv)

 printf("Hello, world!");

 return 0;

}

Fig. 1. LAM encoding of hello.c

The block artefact method (or BAM) which we use in this
paper encodes the bitmap with block characters (e.g., ) in
place of the regular, textual characters and tabs. It leaves
spaces as blanks. The figure 2 shows hello.c with its BAM
encoding

Fig. 2. BAM encoding of hello.c

From a fractal point of view, LAM and BAM are strongly
correlated with r=0.95 and thus, only one of them is needed
for the purposes of this paper [10]. The primary advantage of
BAM over LAM is the former is more robust against language
dependencies, both programming and the cultural languages in
the case of names and comments. Furthermore, BAM
effectively destroys the source readability in favor of the text‘s
spatial-visual pattern in direct support of the immediacy
thesis. We use only BAM in this paper.

B. Readability Theory

The literature on program understanding presupposes the
existence of a posited cognitive load associated with
comprehending code through an understanding hierarchy. The
―bottom-up‖ theory of understandability maintains that the
first step in grasping the code is to read it. Higher mental
models of program flows, organization themes, abstraction,
design patterns, etc. develop from this first and arguably,
necessary step. Readability models hypothesize that the
cognitive load is measurable and furthermore, correlated with
density of operators and operands, logic complexity, lines of
code (LOC), statement length, number of statements, etc.
Advocates apprehend these quantities as constituting metrics
they define as ―readability‖. While it is clear that readability

models reside at the lowest level in the understand hiearchy,
they do not, nor are they designed to, capture all aspects of
program understanding. According to Borstler, et al [31],
readability models have value precisely because they ―catch‖
some aspects of program understanding rather than attempting
to measure it entirely.

Readability research is perhaps represented variously in
the literature by three distinct generations: Halstead, machine-
learned, and prose-inspired. They are similar in that they each
use syntactic featuires (e.g., line length, number of identifiers,
length of identifiers, etc.) to assess the readability of source.

1) Halstead Statistics
Halstead [32] was interested in predicting programming

effort to which he related physical quantities like volume and
gas pressure. He defined program length, N, to be the sum of
operators, N1, and operands, N2,

N = N1 + N2 (4)

Program vocabulary is the sum of unique is the sum of
unique operators, n1, and unique operands, n2,

n = n1 + n2 (5)

Program volume is a measure similar to Shannon entropy,
namely,

V = N log n (6)

Difficulty combines information about unique operators
and operands and total operations,

Df = N1 n1 / 2 n2 (7)

Effort is difficulty as a multiplier of volume:

E = Df  V (8)

A higher value in any of these statistics predicts the code is
more difficult to read.

2) Machine-Learned Metrics
Buse and Weimer (or BW) [33] used supervised learning

to train a Bayesian classifer to associate Halstead-type
measurements with human judgements of the same code.

After training is complete, the classifier operation is XY
where X is a code snippet and Y is its predicted readability
score.

Posnet, Hindle, and Devanbu (or PHD) [34] endeavored to
simplify and improve the BW model using classical software
engineering and information theory defined as

PHD = 1 / (1 + e
-z
) (9)

where

z = 8.87 – 0.033 V + 0.40 LOC – 1.5 H (10)

where V is the Halstead volume, LOC is lines of code, and
H is the Shannon information of tokens, namely,

 () ∑

 (11)

and pi is the fraction of tokens, si, in a source, S. In this
case, the learning was derived through regression analysis.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

15 | P a g e

www.ijacsa.thesai.org

A higher value of BW or PHD predicts the source code is
more difficult to read.

3) Prose-Inspired Metrics
These metrics are inspired by Flesch-Kincade [35]

readability score for prose. Abbas [36] with Borestler,
Cspersend, and Nordstrin [31] developed the ―average
sentence length‖ (ASL) metric which is the average number of
tokens per statement. They also formulated the ―average word
length‖ (AWL) metric, which is the average length of tokens
adusted for special operators like ―.‖. The authors integrated
these measures into a model they called the ―software
readability ease score or SRES,

SRES = ASL – 0.1 AWL (12)

A higher SRES value predicts the source code is more
difficult to read.

4) Readability Indications
The table 3 summarizes the readability indications each

model.

TABLE III. READABILITY MODEL INDICATIONS

Model Predicts
N Difficulty
n Difficulty
V Difficulty
Df Difficulty
E Difficulty
BW Ease
PHD Ease
SRES Difficulty

IV. METHODS

 The experimental design is conceptually very simple:
generate the beauty and readability scores for each file in the
corpus and using robust methods, analyze correlations.

A. C language

The choice of C was motivated by a few factors, one being
that C is one of the most widely used languages, frequently at
or near the top of popularity and for a number of years [37,
38]. Another is many modern language designs have been
significantly influenced by and borrow from C and
consequently, what may be valid for C could have
implications broadly for other languages. Finally, C has a
production-quality beautifier tool, indent [39], which succeeds
cb. It generates GNU, K&R, BSD, and Linux styles in Table
1.

B. Corpus

The GNU Core Utilities [40] is the testbed. It consists of
114 open source programs that comprise of the standard shell
commands like cat, ls, sort, etc. of the Linux operating
system. In total, there are nearly 70,000 LOC. However, we
don‘t use the C programs directly. We instead follow Coleman
and Gandhi [14] and strip compiler and preprocessor
directives, prototypes, typedefs, copyright notices, and the
like, then decompose the remains into 1,043 single-function C
files or approximately 53,000 LOC. Essentially, anything
outside a function definition gets filtered except for
comments that immediately precede the function definition;
we keep those. We believe single-function C files as such

reduces the number of confounding variables and simplifies
the study. Furthermore, single-function C files lend the
experimental results greater generalization for languages like
Java, Python and others that are similar to C except in those
aspects we remove.

The figure 3 (Chart) below gives summary statistics of the
corpus of 1,043 baselines. The minimum length is 2 LOC; the
median is 32 LOC; and the maximum is 1,034 LOC.

Fig. 3. Distribution of baseline sizes of the test bed corpus.

C. Fractal Dimension

To estimate the fractal dimension we repurpose a library,
Fractop [41], which had been originally designed to estimate
the fractal characteristics of nerve tissue images. For ruler, r,
in Equation 2, we use 2, 3, 4, 6, 8, 12, 16, 32, 62, and 128
pixels which is the default grid in Fractop.

D. Result Matrices

There are 11 beauty factors and eight readadbility scores,
respectively. For each file in the corpus, calculate these 19
scores. Since we are studying only aesthetics versus
readability, not aesthetics by itself nor readability by itself, we

only compute the correlation coefficients to generate the 118
matrix. However, for simplicity, we present the results in three

separate, grayscale-encoded matrices: 115 for the Halstead

models, 112 for the machine-learning models, and 111 for
prose-inspired model. We intend the use of grayscale only to
explicate and explain general patterns in the data.

E. Statistical Methods

Preliminary analysis of results using the Kolmogorov-
Smirnov test of normality suggest the distributions of beauty
factors and readability scores are not Gaussian. Thus, we use

instead Spearman‘s rho (), the rank-based correlation
coefficient. Since the degree of correlation is important for our
study, we use widely accepted definitions of ―weak‖,
―moderate‖ and ―strong‖ correlation per the table 4.

TABLE IV. CORRELATION DEFINITIONS WITH RANGES, UPPER-BOUND P-
VALUES, AND GRAYSCALE INDICATOR SHADES

Correlation ||  P-value  Indicator
Strong [0.70, 1.00] < 10-153
Moderate [0.30, 0.70] < 10-22
Weak [, 0.30] <0.05 (clear)

None [0, ] 0.05

0%

25%

50%

75%

100%

0

100

200

300

400

500

Fr
eq

LOC

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

16 | P a g e

www.ijacsa.thesai.org

where =0.051 for the one-tailed test (i.e., where direction

matters) versus =0.061 for the two-tailed test (i.e., where
direction doesn‘t matter).

According to our hypotheses, we expect readability ease
(see Table 3) to be positively correlated with beautification
and negatively correlated with debeautification. We expect
readability difficulty to be negatively correlated with
beautification and positively correlated with debeautification.
If beauty is contraindicated, then these correlations are
reversed.

F. Code Analysis Code

The codes that analyze the corpus for beauty and
readability are freely available on GitHub.com [42]. The
remainder of statistical methods are implemented in Microsoft
Excel.

V. RESULTS

This section gives the results of experiments.

A. Beauty versus Halstead metrics

The table 5 gives rank correlations of beauty with Halstead
statistics.

TABLE V. SPEARMAN'S RANK CORRELATION COEFFICIENTS OF BEAUTY

VS. HALSTEAD STATISTICS

B Halstead statistics
Modality T N n V Df E

Debeautify NOI -0.55 -0.55 -0.56 -0.53 -0.56

R2 0.15 0.15 0.15 0.14 0.15
 R5 0.10 0.10 0.10 0.09 0.10

 NON 0.48 0.47 0.48 0.49 0.50

 DEC 0.18 0.18 0.18 0.24 0.21
 Beautify GNU -0.58 -0.57 -0.59 -0.56 -0.59

 K&R -0.46 -0.45 -0.46 -0.46 -0.47

 BSD -0.46 -0.45 -0.46 -0.37 -0.43
 LIN -0.51 -0.50 -0.51 -0.53 -0.53

 MNE -0.31 -0.28 -0.30 -0.31 -0.31

 REC 0.09 0.07 0.09 0.10 0.09

B. Beauty Versus Machine-Learned Metrics

The table 6 gives rank correlations of beauty with
machine-learned statistics.

TABLE VI. SPEARMAN'S RANK CORRELATION COEFFICIENTS OF BEAUTY

VS. MACHINE-LEARNED METRICS

B Machine-learned metrics

Modality T BW PHD

Debeautify
NOI 0.36 0.33

R2 -0.12 -0.12

 R5 -0.05 0.01

 NON -0.37 -0.36

 DEC -0.18 -0.07

 Beautify GNU 0.44 0.31

 K&R 0.31 0.31
 BSD 0.38 0.29

 LIN 0.29 0.38

 MNE 0.17 0.18

 REC -0.06 -0.00

C. Beauty Versus Prose-Inspired Metric

The table 7 gives rank correlations of beauty with prose-
inspired statistics.

TABLE VII. SPEARMAN'S RANK CORRELATION COEFFICIENTS OF BEAUTY

VS. PROSE-INSPIRED METRIC

B Prose-inspired metric
Modality T SRES

Debeautify NOI 0.38

 R2 0.04

 R5 0.02

 NON 0.29

 DEC 0.05

 Beautify GNU -0.44
 K&R -0.35

 BSD -0.41

 LIN -0.29
 MNE -0.16

 REC 0.04

VI. DISCUSSION

We summarize patterns in the data in a series of points.
Note that in every case except where explicitly noted, the
results are statistically significant with the ceiling of
corresponding P-values in Table 4.

A. Prevalence of Weak-to-Moderate Correlations

The data in Tables 5-7 clearly beauty and readability are
related in statistically significant ways. The correlations are all
weak or moderate (i.e., the cells are clear or shaded as ;
there are no cells shaded as .) There is one There are a few
cases of no correlation but these are not statistically
significant. These data support our first hypothesis.

Furtheremore, beauty and readability are correlated in the
directions we would expect with the exception of NOI and
REC (see below). For instance, in Table 5 the de-beautifying
treatments are positively correlated with Halstead statistics
while all the beautifying treatments are anti-correlated with
Halstead statistics. A similar pattern exists in Table 6—and
appropriately since SRES, like the Halstead statistics, indicate
difficulty of readability. In Table 7, we note the opposite
pattern: BW and PHD indicate ease of readability and they are
thus, positively correlated with beauty factors.

B. Absence of Strong Correlations

Tables 5-7 show no evidence of strong correlations. If we
ignore direction, the range of statistically significant

correlations is ||=[0.05,0.59]. Thus, according to R
2
 analysis,

at least 65% of variations in beauty cannot be explained by
variations in readability. However, the median correlation
which is more representative, R

2
=0.0961. In other words, less

than 10% of variations in beauty can be explained by
variations in readability. These data support our second
hypothesis: beauty is a unique property in so far as readability
is concerned. In other words, beauty and readability are not
proxies.

C. Infrequency of Zero Correlation

There is scant evidence of zero correlations (i.e., cells
boxed as ) in Tables 5-7. There are some correlations that
are near zero but they are not statistically significant.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

17 | P a g e

www.ijacsa.thesai.org

D. NOI as a Contrary Indicator

Although categorically NOI is a debeautifying regime,
statistically it behaves like a beautifying regime. This offers
some insight into how beauty factors work. When a decrease
in readability is accompanied by a increase in surface texture
(i.e., B>0), there is negative correlation between beauty and
readability. However, NOI decreases the average surface
texture since more text is collected in the left edge of the
artefact. This results in a positive correlation between de-
beauty and readability. Generally, the debeautifying regimes
in this paper tend to decrease surface texture while the
beautifying regimes tend to increase surfacr texture.

E. REC as a Possible Contrary Indicator

In the cases, of Halstead statistics, REC appears to be a
reasonable candidate as a contrary indicator. The correlation
coefficient has the opposite direction implied by its modality
for all readability scores. However, for PHD and SRES, the
correlations are not statistically significant.

F. R2 and R5

Unlike NOI and to a less extent REC, the correlations for
R2 and R5 are in the appropriate directions for their implied
modality. R2 is not statistically significant for just one of the
readability models (i.e., SRES) while R5 is not statistically
significant for three of them (i.e., BW, PHD and SRES).

G. A case for “self-documenting” Code

Mnemonics are a form of documentation. The data for
MNE suggests perhaps a more reliable approach to comment
(i.e., as opposed to REC) to improve style is through
mnemonics. That is make the code more ―self-documenting‖
by choosing symbol names that reflect their use and aids in
memory. While these data are not in any way intended to
settle controversies concerning comments in code [43-45], it
lends support to the ―no comments‖ school, at least as far as
aesthetics are concerned.

H. Improving Readability Through White Space

Tables 5-7 shows that all beauty treatments that affect
basic tenet #1 (i.e., GNU, K&R, BSD, AND LIN) correspond
consistently to improvements in readability. These treatments
are more strongly correlated with readability than MNE or
REC. In other words, it appears the most efficient means to
improve readability through beautification is through basic
tenet #1. NOI further supports this conclusion which is
stronger than both NON, though the difference is not
statistically significant, and DEC, where the difference is
statistically significant.

I. GNU as a More Readable Style

Note further in Tables 5-7 that || generally tends to be
greater for GNU and the difference is statistically significant

(P <0.05). The one exception is SRES versus GNU (=-0.44)

and BSD (=-0.41): the pattern persists but it is not
statistically significant (P=0.40). In other words, GNU tends
to be more readable. Although the corpus is a GNU project,
presumably written to the GNU standard, that fact should in
theory should reduce the correlation because more files will
have B=0. However, this is not the case which argues GNU, at

least from a readability perspective, is a better style if we just
go by the data.

VII. CONCLUSIONS

The data suggests that while some variations in beauty can
be explained by variations in readability, most cannot be
explained as such, at least not on the corpus in this study. In
other words, beauty and readability are related as we
hypothesized and beauty appears to measure a unique property
in code called aesthetic appeal. The data further suggests that
indentation is reliably correlated with readable code, more
than mnemonics or comments and of the four styles, GNU
style is the most correlated with readability. Future research
needs to confirm these findings for different repositories,
different languages and different styles. We believe this is a
worthwhile endeavor with potential to inform certain deeply
felt and passionately argued beliefs about style.

ACKNOWLEDGMENT

The author thanks Brendon Boldt for assistance with the
ANTLR specification and Maria Luisa Coleman for reading
drafts.

REFERENCES

[1] D. E. Knuth, ―Computer Programming as An Art,‖ CACM, 17 (12),
1974

[2] Bell Telephone Laboratories, Unix Seventh Edition Manual, volume 1,
1979, http://plan9.bell-labs.com/7thEdMan/, last accessed: 10 Jul 2018

[3] B. Kernighan, D. Ritchie, The C Programming Language, Prentice Hall,
1978.

[4] R. Green and H. Ledgard, ―Coding Guidelines: Finding the Art in the
Science,‖ Communications of the ACM, vol 52, issue 2, December 2011,
p57-63, doi :10.1145/2043174.2043191

[5] M. J. Black, ―The Art of Code,‖ Ph.D. thesis, University of
Pennsylvania, 1 Jan 2002

[6] D. Boswell and T. Foucher, The Art of Readable Code, O‘Reilly, 2011

[7] H. Abelson and G. Sussman, The Structure and Interpretation of
Computer Programs, 2nd ed., MIT Press, 1996

[8] P. Kokol, J. Brest, and V. Zumer, ―Long-range correlations in computer
programs,‖ Cybernetics and systems, 28 (1), 43-57, 1997

[9] P. Kokol, and J. Brest, ―Fractal structure of random programs,‖
SIGPLAN notices, 33 (6), 1998

[10] P. Kokol, V. Podgorelec, and J. Brest, ―A wishful complexity metric,‖ in
H. Combes (ed.), FESMA, p. 235-246, 1998

[11] R. Coleman, and P. Gandhi, ―Fractal Analysis of Good Programming
Style‖, Proc. Second International Conference on Computer Science &
Engineering, Dubai, UAE, 28-29 Aug 2015

[12] H-O.Peltgen and P.H. Richter, P.H., The Beauty of Fractals, Springer,
1986

[13] R. Coleman and P. Gandhi, ―Fractal Beauty of Programming Style,‖
Proc. of the 14th International Conference on Software Engineering
Research and Practice, SERP ‘16, CSREA Press, 2016

[14] R. Coleman and B. Boldt, ―Aesthetics Versus Entropy in Source Code,‖
Proc. of the 15th International Conference on Software Engineering and
Practice, SERP ‗17, CSREA Press, 2017

[15] R. Coleman and M. Rahtelli, ―A Fractal Geometry Approach to
Quantifying Aesthetic Values in Scientific Codes‖, Proceedings of the
2017 International Conference on Computational Science and
Computational Intelligence, IEEE Computer Society, Editors: Hamid R.
Arabnia, Leonidas Deligiannidis, Fernando G. Tinetti, Q-N. Tran, M. Qu
Yang, ISBN-13: 978-1-5386-2652-8; BMS Part # CFP1771X-USB; DOI
10.1109/CSCI.2017.313

[16] R.P. Taylor, A.P. Micolich, and D. Jonas, ―Fractal analysis of Pollock‘s
drip paintings,‖ Nature 399, 422 (3 June 1999), doi:10.1038/20833

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

18 | P a g e

www.ijacsa.thesai.org

[17] P. Gerl, Sch nlieb, C., and K.C. Chieh Wang, ―The Use of Fractal
Dimension in Arts Analysis,‖ Harmonic and Fractal Image Analysis,
2004, p70-73

[18] R.P. Taylor, R. Guzman, T.P. Martin, G.R.D. Hall, A.P. Micolich, D.
Jonas, D., Scannell, M.S. Fairbanks, and C.A. Marlow, ―Authenticating
Pollock paintings using fractal geometry,‖ Pattern Recognition Letters,
Volume 28, Issue 6, 2007, p695-702

[19] J. Coddington, J. Elton, D. Rockmore, and Y. Wang, ―Multifractal
analysis and authentication of Jackson Pollock paintings,‖ Proc.
Computer Image Analysis in the Study of Art (SPIE 6810), 2008, doi:
10.1117/12.765015

[20] M. Irfan and D. Stork, ―Multiple visual features for the computer
authentication of Jackson Pollock‘s drip paintings: Beyond box counting
and fractals,‖ Proc. SPIE 7251, Image Processing: Machine Vision
Applications II, 72510Q, 2009

[21] A. Oram and G. Wilson (eds.), Beautiful Code: Leading Programmers
Explain How They Think, O'Reilly, 2007

[22] F. Brooks, ―Towards a theory of the comprehension of computer
programs,‖ International Journal of Man-Machine Studies, 18, 543-554,
1984

[23] M.A., Storey, ―Theories, tools, and research methods in program
comprehension: past, present, and future,‖ Software Quality J., 14:187-
208, doi 10.1007/s11219-006-9216-4, 2006

[24] Stanford Encyclopedia of Philosophy, ―The Concept of the Aesthetic,‖
https://plato.stanford.edu/entries/aesthetic-concept/, last accessed 10 Jul
2018

[25] E. Avidan and D.G. Feitelson, ―From obfuscation to comprehension,‖
ACM SIGSOFT Software Engineering Notes, 23(3):75-77, 1998,
Proceeding ICPC '15 Proceedings of the 2015, IEEE 23rd International
Conference on Program Comprehension, pp. 178-181

[26] J.. Elshoff and M. Marcotty, ―Improving Computer Program Readability
to Aid Modification,‖ Communications of the ACM, 25(8):512-521,
1982

[27] B. Mandelbrot, "How Long is the Coast of Britain? Statistical Self-
Similarity and Fractional Dimension,‖ Science, 156 (3775)

[28] R. Stallman, GNU Coding Standards, Samurai Media Limited, 2015

[29] FreeBSD, ―FreeBSD Kernel Developer's Manual,‖ 2015
https://www.freebsd.org/cgi/man.cgi?query=style&sektion=9, last
accessed: 10 Jul 2018

[30] L. Torvalds, ―Linux Kernel Coding Style,‖
http://slurm.schedmd.com/coding_style.pdf, last accessed: 10 Jul 2018

[31] J. Borstler, M.E. Caspersen, and M. Nordstrom, ―Beauty and the Beast:
Toward a Measurement Framework for Example Program Quality,‖
Software Quality Journal, June 2006, Vol 24, Issue 2, pp. 231-246

[32] M. Halstead, Elements of software science, Elsevier, New York, 1977

[33] R.P.L. Buse and W. Weimer, ―Learning a Metric for Code Readability,‖
IEEE Transactions on Software Engineering, vol 4, issue 4, July 2010, p
546-558

[34] D. Posnett, A. Hindle, and P. Devanbu, ―A Simpler Model of Software
Readability,‖ Proceeding MSR '11 Proceedings of the 8th Working
Conference on Mining Software Repositories, Pages 73-82

[35] R. Flesch, ―A New Readability Yardstick,‖ The Journal of Applied
Psychology, 32(3):221, 194

[36] A. Abbas, ―Properties of Good Java Programs,‖ Master‘s Thesis, Umea
University, Sweden, 2009

[37] Cass, S. ―The 2017 Top Popular Languages,‖ IEEE Spectrum, 17 Jul
2017

[38] TIOBE: The Software Quality Company, ―TIOBE Index for 2018,‖
https://www.tiobe.com/tiobe-index/, last accessed: 11 Jul 2018

[39] C. Wood, J. Arceneaux, J. Kingdon, and D. Ingamells, ―Indent,‖ edition
2.2.10, for Indent Version 2.2.10, 23 July 2008,
https://www.gnu.org/software/indent/manual/indent.pdf, retrieved 11 Jul
2018

[40] Free Software Foundation, Coreutils – GNU core utilities,
http://www.gnu.org/software/coreutils/coreutils.html, last accessed: 11
Jul 2018

[41] D. Cornforth, H. Jelinek, and L. Peichl, ―Fractop: A Tool for Automated
Biological Image Classification,‖ Proc. Sixth Australia-Japan Joint
Workshop on Intelligent and Evolutionary Systems, 2002, p1-8

[42] R. Coleman, https://github.com/roncoleman125/Pretty, last accessed: 11
Jul 2018

[43] J. Kunk, ―To Comment or Not Comment,‖ Visual Studio Magazine, 1
June 2011, https://visualstudiomagazine.com/articles/2011/01/06/to-
comment-or-not-to-comment.aspx, last accessed: 13 June 2017

[44] J. Raskin, ―Comments are more important than code,‖ ACM Queue, vol
3, issue 2, 18 Mar 2005

[45] P. Vogel, ―Why You Shouldn‘t Comment (or Document) Code,‖ Visual
Studio Magazine, 27 June 2013,
https://visualstudiomagazine.com/articles/2013/06/01/roc-rocks.aspx,
last accessed: 13 June 2017

