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Abstract—The relationship between programming style and 

program readability has never been examined empirically, 

although the association has substantial importance for both 

pedagogical and industry best practices. This paper studies a 

fractal, relativistic measure of programming style called the 

beauty factor or “beauty” and puts forward two new hypotheses 

of beauty. First, code with increasing beauty tends to be more 

readable. Second, beauty measures a unique property in code 

called aesthetic value distinct from readability. These hypotheses 

are tested on a corpus of 53,000 lines of open source system codes 

written by experienced Linux programmers. Statistical 

correlation analysis is used on 11 different beauty factors versus 

eight different readability models (i.e., 88 experiments total). As 

the primary finding, the data show the maximum absolute 

statistically significant correlation is ||=0.59 whereas the 

absolute median correlation is ||=0.33. In other words, at least 

65% of statistically significant variations in beauty cannot be 

explained by variations in readability; approximately 90% of 

statistically significant variations in beauty cannot be explained 

typically by variations in readability.  These results lend support 

to both hypotheses. The data further shows indentation is more 

reliably correlated with readability than mnemonics or 

comments and GNU style is more correlated with readability 

than K&R, BSD, or Linux styles. 

Keywords—Programming style; fractal geometry; readability 

―We have seen that computer programming is an art, 
because it applies accumulated knowledge to the world, 
because it requires skill and ingenuity, and especially because 
it produces objects of beauty.‖ ~Donald E. Knuth, 1974 ACM 
Turing Award Lecture [1] 

I. INTRODUCTION 

In 1979 AT&T Bell Labs released Unix version 7 which 
included cb, the C beautifier [2]. A unique tool and the first of 
its kind, cb ―beautified‖ programs, that is, reformatted them, 
according to rules prescribed by the K&R style [3]. In creating 
cb, software engineers did not address the ontology of what is 
beauty in code. They instead focused on the epistemology of 
what is knowable about such beauty which could be 
automated, demonstrated, practiced, and taught. They had 
hoped paying attention to sensori-emotional or aesthetic 
values in code might also promote readability of code. 
However, they were not explicit about this and left the precise 
nature of the relationship between aesthetics and readability 
assumed and open. The literature frequently confounds 
aesthetics and readability as if they are interchangeable (see 
for instance [4-6]). Indeed, the long-held, widely taught, and 
often repeated justification for good style is to make programs 
more readable and presumably, more maintainable [7]. 

One problem is that this view has never been tested 
empirically. Another problem is ontological. Readability is 
about understanding code and aesthetics is about appreciating 
it, l’art pour l’art. Thus, in principle, conflating aesthetic and 
readability is a category mistake. Finally, how different styles 
affect cogntive ease or difficulty of grasping code remains 
poorly understood. In other words, programmers may assume 
on the basis of preference, experience, etc., that one style is 
more readable than another but is personal taste as such 
supported by the data? The question has never been 
investigated empirically.  

This paper studies a relativistic, fractal measure of 
programming style called the beauty factor (or ―beauty‖ for 
short) and puts forward two new hypotheses. First, code with 
increasing beauty tends to be more readable. Secondly, beauty 
measures a unique property of code, call it aesthetic appeal, 
which is distinct from readability. To test these hypotheses, 
the paper assesses the beauty and readability scores of a 
statistically meaningful number of files and analyzes the 
correlations. No correlation denies the first hypothesis. Strong 
correlation denies the second hypothesis. Thus, both 
hypotheses can be logically true simultaenously only with 
weak or moderate correlation. In other words, the 
hypothesized aesthetic value of code is not necessarily 
completely orthogonal to nor a proxy for readability but a 
spectrum of potential. 

II. RELATED WORK 

Kokol, et al, [8-10] showed that programs contain long-
range correlations in characters and tokens. These researchers 
were searching for a fractal metric of software complexity 
using lexical analysis of a small sample of randomly generated 
Pascal programs. This paper uses a larger corpus of production 
C codes and image analysis. Coleman and Gandhi [11] 
hypothesized programming style might be related to fractals 
since fractals are often associated with beauty [12]. This effort 
showed that changes in style were systematically correlated 
with changes in fractal dimension. Coleman and Gandhi [13] 
proposed a fractal, relativistic model and showed beauty was 
weakly to moderately correlated with software complexity in 
directions that comported with style recommendations. In 
other words, there is virtue in brevity and simplicity in code. 
Coleman and Boldt [14] investigated disorder that is often 
introduced in code through maintenance and showed beauty 
was weakly to moderately anti-correlated with entropy.  
Coleman and Rahtelli [15] showed the beauty model predicts 
aesthetic value in scientific libraries; in this paper we study 
system codes. These investigations of beauty resemble efforts 
by researchers who used fractal geometry to assess aesthetic 
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values in paintings, including Pollock‘s ―action paintings‖ 
[16-20]; the main technical differences are that this paper 
studies code as opposed to fine art and programming style as 
opposed artistic style. Beautiful Code [21] deals with 
conceptual beauty in the design and analysis of algorithms, 
testing, and debugging, topics which are outside the scope of 
this paper. Also outside the scope of this paper is the more 
general topic of program comprehension, which focuses on 
cognitive models to explain how programmers understand 
code and the development of tools to aid them [22, 23]. 

III. THEORY  

A. Aesthetic Theory 

1) Working Definitions 
The subject of aesthetics has a long history of thoughtful 

consideration of matters of style and taste dating to ancient. 
According to the Stanford Encyclopedia of Philosophy the 
term ―aesthetic‖ refers to, among other things, a kind of 
heuristic judgement or value called beauty, appeal, 
appreciation, virtue, goodness, etc. [24] We use the term 
―aesthetic appeal‖ when referring sensori-emotional 
judgements as opposed to other forms of appeal. Thus, the 
working definition of ―beauty,‖ namely, the measure of 
programming style, is a special case of the aesthetic definition. 
We say ―beautiful‖ code has measurably more style than 
indecorous code. To ―beautify‖ code is to measurably improve 
its style according to what we know about well-written code in 
terms of layout and structure. To ―debeautify‖ code is to do 
the opposite; in fact, there are tools, known as ―obfuscators‖ 
that use anti-style techniques usually for information security 
purposes [25, 26].  

2) Immediacy and Disinterest theses Applied to Code 
The immediacy thesis maintains that judgements of appeal 

are immediate or straightforward through sensory 
discernment. [24] For code, this suggests the possibility of 
appreciating its form as a work of art, that is, without 
attempting to ―read‖ or ―understand‖ its function. This paper 
argues (see below) that the rules of judging good 
programming style in this way are widely known and firmly 
established. So much that these rules can be automated by 
programs like cb which reformat target code without regard 
for how the target works or even what it does. What matters 
foremost, aside from preserving the semantics, is how the 
target looks in the end. 

The disinterest thesis claims that judgements of appeal are 
not self-interested. This is the sense of ―art for its own sake.‖ 
For code, a programmer could appreciate the rules of a style 
like K&R for ―intellectual and emotional satisfaction,‖ as 
Knuth described it. [1] Whether K&R or one of the other 
styles we study makes the code more readable and how much 
is the subject of this paper. 

3) Basic Tenets 
The beauty model presupposes we know or can know 

epistemologically what programmers think—or better, how 
they feel—about style. This knowledgebase already exists in a 

mature and rich form that can be observed directly, repeatedly, 
and systematically in style guides, coding standards, 
organizational coding policies, textbooks, research reports, 
example codes, blogs, etc. It can also be observed indirectly 
through use and side-effects of tools like cb, functions 
embedded in modern IDEs for reformatting code code, and 
online sites that have codified this knowledge for a variety of 
styles and languages. In an observational study, Coleman and 
Gandhi [13] surveyed this knowledgebase and identified three 
general principles they called ―basic tenets‖ of good 
programming style: namely, 1) use white space judiciously; 2) 
choose mnemonic names; and 3) include documentation. 

4) Beauty Factors 
Let S be some source called the control or ―baseline.‖ 

Then, we have S‘ such that 

S’ = T(S) (1) 

where T is a semantic-preserving transformation or 
treatment. That is, S and S‘ differ only in style. There are two 
modalities of T with respect to the basic tenets: beautification 
and debeautification. We encode S and S’ separately as an in-
memory bitmap called an artefact. (The fact that it is in-
memory only serves to say it is independent of file format 
althought it may for some reasons reside in secondard 
storage.) Finally, we measure the fractal dimension of these 
artefacts using reticular cell counting (a.k.a., the box counting 
dimension), D [27]: 

                        ( )     
   

     ( )

      
 

(2) 

where Nr(S) is the number of components (i.e., cells) 
covered by the ruler of size r. (Note that S in the above 
equation refers to the artefact of the baseline and not the 
baseline itself; we use this form only to simplify the notation.) 
Thus, D(S) is the slope of the regression line over different 
ruler sizes, r. We similarly measure D‘=D(S’). The beauty 
factor model, B, is given by the following equation: 

B ( S | T) = k log (D / D’) (3) 

where k is a constant. When k=10 and the logarithm is base 
ten, the units are decibels. B is indicated as follows: 

1. If B < 0, the style of S might be improved by T. 

2. If B  0, the style of S probably won‘t be improved by 
T. 

A contrary indication implies T is categorized in a 
modality mathematically with –B.  

5) Semantic-Preserving Transformations 
The tables 1 and 2 give the semantic-preserving treatments 

we use in this paper.  

TABLE I. BEAUTIFYING TREATMENTS 

T Tenet Regime 
GNU 1 Apply GNU style [28]. 
K&R 1 Apply K&R style [3]. 
BSD 1 Apply BSD style [29]. 
LIN 1 Apply Linux style [30]. 
MNE 2 Refactor names to be more mnemonic 
REC 3 Add one or more comments. 
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TABLE II. DE-BEAUTIFYING TREATMENTS 

T Tenet Regime 
NOI 1 Remove indents. 
R2 1 Randomize indent with 1-2 spaces. 
R5 1 Randomize indent with 1-5 spaces. 
NON 2 Refactor names to be less mnemonic 
DEC 3 Remove all comments. 

These transformations are not, nor intended to be, 
exhaustive. Rather, they are indicative of transformations in 
general and sufficient to test the main hypotheses. 

6) Block Artefact Method 
The literal artefact method (or LAM) encodes the bitmap 

using a fixed width font as S (or S‘) literally looks like itself. 
The figure 1 shows the file, hello.c, with its LAM encoding. 
We do not use LAM in this paper. 

#include <stdio.h> 

int main(int argc, char** argv)  

  printf("Hello, world!"); 

  return 0; 

} 

Fig. 1. LAM encoding of hello.c 

The block artefact method (or BAM) which we use in this 
paper encodes the bitmap with block characters (e.g.,  ) in 
place of the regular, textual characters and tabs. It leaves 
spaces as blanks. The figure 2 shows hello.c with its BAM 
encoding 

 

Fig. 2. BAM encoding of hello.c 

From a fractal point of view, LAM and BAM are strongly 
correlated with r=0.95 and thus, only one of them is needed 
for the purposes of this paper [10]. The primary advantage of 
BAM over LAM is the former is more robust against language 
dependencies, both programming and the cultural languages in 
the case of names and comments. Furthermore, BAM 
effectively destroys the source readability in favor of the text‘s 
spatial-visual pattern in direct support of the immediacy 
thesis. We use only BAM in this paper. 

B. Readability Theory 

The literature on program understanding presupposes the 
existence of a posited cognitive load associated with 
comprehending code through an understanding hierarchy. The 
―bottom-up‖ theory of understandability maintains that the 
first step in grasping the code is to read it. Higher mental 
models of program flows, organization themes, abstraction, 
design patterns, etc. develop from this first and arguably, 
necessary step. Readability models hypothesize that the 
cognitive load is measurable and furthermore, correlated with 
density of operators and operands, logic complexity, lines of 
code (LOC), statement length, number of statements, etc. 
Advocates apprehend these quantities as constituting metrics 
they define as ―readability‖. While it is clear that readability 

models reside at the lowest level in the understand hiearchy, 
they do not, nor are they designed to, capture all aspects of 
program understanding. According to Borstler, et al [31], 
readability models have value precisely because they ―catch‖ 
some aspects of program understanding rather than attempting 
to measure it entirely. 

Readability research is perhaps represented variously in 
the literature by three distinct generations: Halstead, machine-
learned, and prose-inspired. They are similar in that they each 
use syntactic featuires (e.g., line length, number of identifiers, 
length of identifiers, etc.) to assess the readability of source. 

1) Halstead Statistics 
Halstead [32] was interested in predicting programming 

effort to which he related physical quantities like volume and 
gas pressure. He defined program length, N, to be the sum of 
operators, N1, and operands, N2, 

N = N1 + N2 (4) 

Program vocabulary is the sum of unique is the sum of 
unique operators, n1, and unique operands, n2, 

n = n1 + n2 (5) 

Program volume is a measure similar to Shannon entropy, 
namely, 

V = N log n (6) 

Difficulty combines information about unique operators 
and operands and total operations, 

Df = N1 n1 /  2 n2 (7) 

Effort is difficulty as a multiplier of volume: 

E = Df  V (8) 

A higher value in any of these statistics predicts the code is 
more difficult to read. 

2) Machine-Learned Metrics 
Buse and Weimer (or BW) [33] used supervised learning 

to train a Bayesian classifer to associate Halstead-type 
measurements with human judgements of the same code. 

After training is complete, the classifier operation is XY 
where X is a code snippet and Y is its predicted readability 
score.  

Posnet, Hindle, and Devanbu (or PHD) [34] endeavored to 
simplify and improve the BW model using classical software 
engineering and information theory defined as 

PHD = 1 / (1 + e
-z
) (9) 

where 

z = 8.87 – 0.033 V + 0.40 LOC – 1.5 H (10) 

where V is the Halstead volume, LOC is lines of code, and 
H is the Shannon information of tokens, namely, 

  ( )   ∑        
 
    (11) 

and pi is the fraction of tokens, si, in a source, S. In this 
case, the learning was derived through regression analysis. 
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A higher value of BW or PHD predicts the source code is 
more difficult to read. 

3) Prose-Inspired Metrics 
These metrics are inspired by Flesch-Kincade [35] 

readability score for prose. Abbas [36] with Borestler, 
Cspersend, and Nordstrin [31] developed the ―average 
sentence length‖ (ASL) metric which is the average number of 
tokens per statement. They also formulated the ―average word 
length‖ (AWL) metric, which is the average length of tokens 
adusted for special operators like ―.‖. The authors integrated 
these measures into a model they called the ―software 
readability ease score or SRES, 

SRES = ASL – 0.1 AWL (12) 

A higher SRES value predicts the source code is more 
difficult to read. 

4) Readability Indications 
The table 3 summarizes the readability indications each 

model. 

TABLE III. READABILITY MODEL INDICATIONS 

Model Predicts 
N Difficulty 
n Difficulty 
V Difficulty 
Df Difficulty 
E Difficulty 
BW Ease 
PHD Ease 
SRES Difficulty 

IV. METHODS 

 The experimental design is conceptually very simple: 
generate the beauty and readability scores for each file in the 
corpus and using robust methods, analyze correlations. 

A. C language 

The choice of C was motivated by a few factors, one being 
that C is one of the most widely used languages, frequently at 
or near the top of popularity and for a number of years [37, 
38]. Another is many modern language designs have been 
significantly influenced by and borrow from C and 
consequently, what may be valid for C could have 
implications broadly for other languages. Finally, C has a 
production-quality beautifier tool, indent [39], which succeeds 
cb. It generates GNU, K&R, BSD, and Linux styles in Table 
1.  

B. Corpus 

The GNU Core Utilities [40] is the testbed. It consists of 
114 open source programs that comprise of the standard shell 
commands like cat, ls, sort, etc. of the Linux operating 
system. In total, there are nearly 70,000 LOC. However, we 
don‘t use the C programs directly. We instead follow Coleman 
and Gandhi [14]  and strip compiler  and preprocessor 
directives, prototypes, typedefs, copyright notices, and the 
like, then decompose the remains into 1,043 single-function C 
files or approximately 53,000 LOC. Essentially, anything 
outside a function definition gets filtered  except for 
comments that immediately precede the function definition; 
we keep those. We believe single-function C files as such 

reduces the number of confounding variables and simplifies 
the study. Furthermore, single-function C files lend the 
experimental results greater generalization for languages like 
Java, Python and others that are similar to C except in those 
aspects we remove. 

The figure 3 (Chart) below gives summary statistics of the 
corpus of 1,043 baselines. The minimum length is 2 LOC; the 
median is 32 LOC; and the maximum is 1,034 LOC. 

 

Fig. 3. Distribution of baseline sizes of the test bed corpus. 

C. Fractal Dimension 

To estimate the fractal dimension we repurpose a library, 
Fractop [41], which had been originally designed to estimate 
the fractal characteristics of nerve tissue images. For ruler, r, 
in Equation 2, we use 2, 3, 4, 6, 8, 12, 16, 32, 62, and 128 
pixels which is the default grid in Fractop. 

D. Result Matrices 

There are 11 beauty factors and eight readadbility scores, 
respectively. For each file in the corpus, calculate these 19 
scores. Since we are studying only aesthetics versus 
readability, not aesthetics by itself nor readability by itself, we 

only compute the correlation coefficients to generate the 118 
matrix. However, for simplicity, we present the results in three 

separate, grayscale-encoded matrices: 115 for the Halstead 

models, 112 for the machine-learning models, and 111 for 
prose-inspired model. We intend the use of grayscale only to 
explicate and explain general patterns in the data. 

E. Statistical Methods 

Preliminary analysis of results using the Kolmogorov-
Smirnov test of normality suggest the distributions of beauty 
factors and readability scores are not Gaussian. Thus, we use 

instead Spearman‘s rho (), the rank-based correlation 
coefficient. Since the degree of correlation is important for our 
study, we use widely accepted definitions of ―weak‖, 
―moderate‖ and ―strong‖ correlation per the table 4. 

TABLE IV. CORRELATION DEFINITIONS WITH RANGES, UPPER-BOUND P-
VALUES, AND GRAYSCALE INDICATOR SHADES 

Correlation ||  P-value  Indicator 
Strong [0.70, 1.00] < 10-153  
Moderate [0.30, 0.70] < 10-22  
Weak [, 0.30] <0.05 (clear) 

None [0, ] 0.05  
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where  =0.051 for the one-tailed test (i.e., where direction 

matters) versus =0.061 for the two-tailed test (i.e., where 
direction doesn‘t matter). 

According to our hypotheses, we expect readability ease 
(see Table 3) to be positively correlated with beautification 
and negatively correlated with debeautification. We expect 
readability difficulty to be negatively correlated with 
beautification and positively correlated with debeautification. 
If beauty is contraindicated, then these correlations are 
reversed. 

F. Code Analysis Code 

The codes that analyze the corpus for beauty and 
readability are freely available on GitHub.com [42]. The 
remainder of statistical methods are implemented in Microsoft 
Excel. 

V. RESULTS 

This section gives the results of experiments. 

A. Beauty versus Halstead metrics 

The table 5 gives rank correlations of beauty with Halstead 
statistics. 

TABLE V. SPEARMAN'S RANK CORRELATION COEFFICIENTS OF BEAUTY 

VS. HALSTEAD STATISTICS 

B  Halstead statistics 
Modality T N n V Df E 

Debeautify NOI -0.55 -0.55 -0.56 -0.53 -0.56 

R2 0.15 0.15 0.15 0.14 0.15 
 R5 0.10 0.10 0.10 0.09 0.10 

 NON 0.48 0.47 0.48 0.49 0.50 

 DEC 0.18 0.18 0.18 0.24 0.21 
       Beautify GNU -0.58 -0.57 -0.59 -0.56 -0.59 

 K&R -0.46 -0.45 -0.46 -0.46 -0.47 

 BSD -0.46 -0.45 -0.46 -0.37 -0.43 
 LIN -0.51 -0.50 -0.51 -0.53 -0.53 

 MNE -0.31 -0.28 -0.30 -0.31 -0.31 

 REC 0.09 0.07 0.09 0.10 0.09 

B. Beauty Versus Machine-Learned Metrics 

The table 6 gives rank correlations of beauty with 
machine-learned statistics. 

TABLE VI. SPEARMAN'S RANK CORRELATION COEFFICIENTS OF BEAUTY 

VS. MACHINE-LEARNED METRICS 

B  Machine-learned metrics 

Modality T BW PHD 

Debeautify 
NOI 0.36 0.33 

R2 -0.12 -0.12 

 R5 -0.05 0.01 

 NON -0.37 -0.36 

 DEC -0.18 -0.07 

    Beautify GNU 0.44 0.31 

 K&R 0.31 0.31 
 BSD 0.38 0.29 

 LIN 0.29 0.38 

 MNE 0.17 0.18 

 REC -0.06 -0.00 

 

C. Beauty Versus Prose-Inspired Metric 

The table 7 gives rank correlations of beauty with prose-
inspired statistics. 

TABLE VII. SPEARMAN'S RANK CORRELATION COEFFICIENTS OF BEAUTY 

VS. PROSE-INSPIRED METRIC 

B  Prose-inspired metric 
Modality T SRES 

Debeautify NOI 0.38 

 R2 0.04 

 R5 0.02 

 NON 0.29 

 DEC 0.05 

   Beautify GNU -0.44 
 K&R -0.35 

 BSD -0.41 

 LIN -0.29 
 MNE -0.16 

 REC 0.04 

VI. DISCUSSION 

We summarize patterns in the data in a series of points. 
Note that in every case except where explicitly noted, the 
results are statistically significant with the ceiling of 
corresponding P-values in Table 4. 

A. Prevalence of Weak-to-Moderate Correlations 

The data in Tables 5-7 clearly beauty and readability are 
related in statistically significant ways. The correlations are all 
weak or moderate (i.e., the cells are clear or shaded as ; 
there are no cells shaded as .) There is one There are a few 
cases of no correlation but these are not statistically 
significant. These data support our first hypothesis. 

Furtheremore, beauty and readability are correlated in the 
directions we would expect with the exception of NOI and 
REC (see below). For instance, in Table 5 the de-beautifying 
treatments are positively correlated with Halstead statistics 
while all the beautifying treatments are anti-correlated with 
Halstead statistics. A similar pattern exists in Table 6—and 
appropriately since SRES, like the Halstead statistics, indicate 
difficulty of readability. In Table 7, we note the opposite 
pattern: BW and PHD indicate ease of readability and they are 
thus, positively correlated with beauty factors. 

B. Absence of Strong Correlations 

Tables 5-7 show no evidence of strong correlations. If we 
ignore direction, the range of statistically significant 

correlations is ||=[0.05,0.59]. Thus, according to R
2
 analysis, 

at least 65% of variations in beauty cannot be explained by 
variations in readability. However, the median correlation 
which is more representative, R

2
=0.0961. In other words, less 

than 10% of variations in beauty can be explained by 
variations in readability. These data support our second 
hypothesis: beauty is a unique property in so far as readability 
is concerned. In other words, beauty and readability are not 
proxies. 

C. Infrequency of Zero Correlation 

There is scant evidence of zero correlations (i.e., cells 
boxed as ) in Tables 5-7. There are some correlations that 
are near zero but they are not statistically significant. 
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D. NOI as a Contrary Indicator 

Although categorically NOI is a debeautifying regime, 
statistically it behaves like a beautifying regime. This offers 
some insight into how beauty factors work. When a decrease 
in readability is accompanied by a increase in surface texture 
(i.e., B>0), there is negative correlation between beauty and 
readability. However, NOI decreases the average surface 
texture since more text is collected in the left edge of the 
artefact. This results in a positive correlation between de-
beauty and readability. Generally, the debeautifying regimes 
in this paper tend to decrease surface texture while the 
beautifying regimes tend to increase surfacr texture. 

E. REC as a Possible Contrary Indicator 

In the cases, of Halstead statistics, REC appears to be a 
reasonable candidate as a contrary indicator. The correlation 
coefficient has the opposite direction implied by its modality 
for all readability scores. However, for PHD and SRES, the 
correlations are not statistically significant.  

F. R2 and R5 

Unlike NOI and to a less extent REC, the correlations for 
R2 and R5 are in the appropriate directions for their implied 
modality. R2 is not statistically significant for just one of the 
readability models (i.e., SRES) while R5 is not statistically 
significant for three of them (i.e., BW, PHD and SRES).  

G. A case for “self-documenting” Code 

Mnemonics are a form of documentation. The data for 
MNE suggests perhaps a more reliable approach to comment 
(i.e., as opposed to REC) to improve style is through 
mnemonics. That is make the code more ―self-documenting‖ 
by choosing symbol names that reflect their use and aids in 
memory. While these data are not in any way intended to 
settle controversies concerning comments in code [43-45], it 
lends support to the ―no comments‖ school, at least as far as 
aesthetics are concerned. 

H. Improving Readability Through White Space 

Tables 5-7 shows that all beauty treatments that affect 
basic tenet #1 (i.e., GNU, K&R, BSD, AND LIN) correspond 
consistently to improvements in readability. These treatments 
are more strongly correlated with readability than MNE or 
REC. In other words, it appears the most efficient means to 
improve readability through beautification is through basic 
tenet #1. NOI further supports this conclusion  which is 
stronger than both NON, though the difference is not 
statistically significant, and DEC, where the difference is 
statistically significant. 

I. GNU as a More Readable Style 

Note further in Tables 5-7 that || generally tends to be 
greater for GNU and the difference is statistically significant 

(P <0.05). The one exception is SRES versus GNU (=-0.44) 

and BSD (=-0.41): the pattern persists but it is not 
statistically significant (P=0.40). In other words, GNU tends 
to be more readable. Although the corpus is a GNU project, 
presumably written to the GNU standard, that fact should in 
theory should reduce the correlation because more files will 
have B=0. However, this is not the case which argues GNU, at 

least from a readability perspective, is a better style if we just 
go by the data. 

VII. CONCLUSIONS 

The data suggests that while some variations in beauty can 
be explained by variations in readability, most cannot be 
explained as such, at least not on the corpus in this study. In 
other words, beauty and readability are related as we 
hypothesized and beauty appears to measure a unique property 
in code called aesthetic appeal. The data further suggests that 
indentation is reliably correlated with readable code, more 
than mnemonics or comments and of the four styles, GNU 
style is the most correlated with readability. Future research 
needs to confirm these findings for different repositories, 
different languages and different styles. We believe this is a 
worthwhile endeavor with potential to inform certain deeply 
felt and passionately argued beliefs about style. 
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