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Abstract—This article is focused on the overview of 

functionality of the neurons and investigation of the current 

research and algorithms used for brain source localization.  The 

human brain is made up of active neurons and continuously 

generates electrical impulses on scalp surface. The neurons 

transmit the message through the dendrites called pyramidal 

cells. The active parts of the brain are addressed and measured 

by various neuroimaging techniques such as 

electroencephalography (EEG), magnetoencephalography 

(MEG) etc.  These techniques help to diagnose pathological, 

physiological, mental and functional abnormalities of the brain. 

EEG is a high temporal resolution and a low spatial resolution 

technique which yields the non-invasively potential difference 

measurements between pair of electrodes over the scalp. It is 

used in understanding behavior of brain which is further used to 

analyze various brain disorders. EEG brain source localization 

has remained an active area of research in neurophysiology since 

last couple of decades and still being investigated in terms of its 

processing time, resolution, localization error, free energy, 

integrated techniques and algorithms applied. In this paper, 

several approaches of forward problem, inverse problem and 

Bayesian framework have been explored to address the 

uncertainties and issues of localization of the neural activities 

incurring in the brain.  
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forward problem; inverse problem; bayesian framework 

I. INTRODUCTION 

The human brain is made of neurons.  The neurons 

pass out the message through the dendrites called pyramidal 
cells so called neural activity. This brain neural activity causes 
the generation of the electrical potentials over the scalp[1, 2]. 
The neurons’ main function is to communicate chemically and 
electrically with other neurons[3]. They send the messages 
from one lobe to another lobe thereby causing the dipole 
currents inside the brain generated due to the stimuli or other 
brain disorders. and subsequently generate the synapse, pre-
synaptic and post-synaptic actions in the brain [4]. This 
section consists of the following parts: 

A. Brain Neurons 

The brain controls all main functions of the body. It is  
composed of cerebrum, cerebellum, and brainstem[5, 6]. The 
cerebrum is divided into left and right hemispheres. The 
fissures or grooves, divides cerebrum into four main parts i.e., 
frontal, temporal lobe, parietal lobe and occipital lobe. The  
mid-brain, pons, and medulla are interconnected with 
cerebrum with spinal cord[7]. Since the neuron is composed of 
cell body, nucleus, axons, nodes of ranvier, myelin sheath and 
dendrites as shown Fig.1.  The neuron’s structure physically 
change with  the passage of the time and age of the subjects 
such as from infant to old [8].  

B. EEG Current Dipoles 

On the application of the stimuli, electricity is generated by 
a particular group of neurons in the cortex so called dipoles as 
shown in Fig. 2. This dipole generates the electric field and 
creates potential field which is picked up by the scalp EEG 
electrodes. 

 
Fig. 1. Neuron structure[3] 

EEG measures the current caused by the excitations of the 
dendrites of pyramidal neurons.  The potential differences are 
caused by summed postsynaptic potentials from pyramidal 
cells that create diploes between soma and apical dendrites as 
shown in Fig. 3. 
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Fig. 2. Generation of current dipoles[6] 

C. EEG Generators 

The pre-synaptic and post-synaptic are linked through the 
synapses. The neurons process the inhibitory action potentials 
and then convert it into post synaptic potentials for firing other 
neurons as shown in Fig. 3.  The signals are superimposed 
synchronized and pass from grey matter and become normal 
to cortical surface thereby creating potentials on cortical 
surface.  

 

Fig. 3. Releasing  ions [9] 

The depolarization or excitatory postsynaptic potential 
(EPSP) reduces to -40 mV in the intracellular volume. The 
hyper polarization or inhibitory postsynaptic potential (IPSP) 
potential difference is subsequently increased.  Due to the 
action of Na+, K+ and Cl- in the brain, potential difference of 
70–110 mV for the period of 0.3 millisecond is generated as 
shown the Fig. 4.  

 

Fig. 4. Action potential [10] 

 

Fig. 5. Equivalent circuits for a neuron [12] 

An equivalent circuit of capacitor, resistor and potential 
source is shown in Fig. 5.  At rest, voltage stored between the 
intra-cellular and extracellular areas is denoted by two charged 
capacitors.   One is assigned for potential difference between 
apical dendrites side and other for potential difference at the 
cell body for basal dendrite side. Action of charging and 
discharging takes place between capacitors with the on and off 
switch. 

D. EEG Applications 

EEG being a revolutionized neuroimaging technique is not 
only used for helping in diagnosing pathological, 
physiological, mental and functional abnormalities of the brain 
but also for understanding epilepsy, schizophrenia, and 
Alzheimer’s diseases. EEG is assisting in diagnosing 
disabilities, hyperactivity, sleep, awakening disorders, 
depression and surgery in patient with seizures. Moreover, 
EEG is useful for identifying coma, brain and death problems 
and locating injury, stroke, tumor, evoked potentials sources 
and brain cognitive behavior.  EEG is also extensively used in 
investigating drug effects, aesthesia issues, brain growth and 
death. It is currently being integrated with other brain imaging 
modalities for better human life [11]. 

In the literature, there are several other neuroimaging 
techniques such as MEG, ECoG. Functional MRI (fMRI) and 
NIRS used in brain neurology. Their comparative analysis is 
given in TABLE I. where EEG mostly seems to be most 
favorable neuroimaging technique in given characteristics 
such as measurement, resolution and method. 

TABLE I. COMPARISONS OF NEUROIMAGING TECHNIQUES[11] 

Technique  Measurement Temporal Spatial Method  

Type Type (m sec) (mm) Type 

EEG Electrical 0.05 10 Invasive 

MEG Magnetic 0.05 5 Invasive 

ECoG Electrical 0.003 1 Invasive 

fMRI Metabolic 1 1 Non-Invasive 

NIRS Metabolic 1 5 Non-Invasive 

This article is divided into three sessions. Session I is about 
the introduction of EEG source localization. Section II covers 
the EEG brain source localization approaches. Section III 
gives conclusion and remarks. 
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II. EEG  SOURCE LOCALIZATION ALGORITHIMS 

The forward and inverse problems are used for locating the 
sources of the brain activity. The former problem measures 
potentials over the scalp of the skull whereas the later yields 
sources of the activity and localization[12]. Both Techniques 
are discussed in details in subsequent sections. 

A. Forward Problem 

Forward problem is related to measuring of the potentials 
with the electrodes from the surface of the scalp and has a 
unique solution as shown in Fig. 6.  

 

Fig. 6. Forward problem [12] 

The grey matter as shown in Fig. 9.  is composed of 
pyramidal cells which forward the currents to scalp surface 
through the apical dendrites with 2 milli-second duration. 
Orientation of the neurons causes the superimposing and 
cancelling out the electrical signals. Since neural activity is 
neither the static and nor the dynamic and therefore it is called 
quasi- statics conditions [13]. The Poisson's equation 
containing the divergence operator relates the potential 
difference, and current densities of the volume of the brain i.e. 

0
. lim

G
G

J JdS




     

This integral model represents the complete spherical 
shape of the surface and volume (G) where the flux in is 
negative and flux out is positive. Its current density form is 

represented by . mJ I  . Lines represent the flux caused by 

the currents and potentials generated in the volume[14] as 
shown in Fig. 7. 

 
Fig. 7. Current density with equip-potential lines[12, 15] 

The human head is composed of the isotropic and 
anisotropic tissues. The conductivity causes electric currents. 
The skull is made of spongiform layer, skull and scalp and  
composed of biological and chemical tissues [16] which 
affects the current flow from cortical surface to scalp. [17]. 
The skull consists of three layers such as a spongiform layer 
and two hard layers as shown in Fig.8. The conductivity 
tangential to the skull surface is 10 times larger than the radial 
conductivity. 

 
Fig. 8. Brain conductivity tissues [18].  

The white matter has 9 times greater conductively than 
grey matter due to structure of the cells. The watery tissues 
have a greater conductivity. The several models of isotropic 
and anisotropic conductivities are incorporated in the forward 
problem to address the issues of the conductivities.  

 

Fig. 9. Grey and white matter[7, 9] 

Faraday’s law gives zero results due to quasi-static 
conditions that is ∇ × E = 0.  Potential and electric fields with 

the gradient operator is given as E=  The negative sign 

reflects electric field direction.  The human head is composed 
of the different types of the layers. As the outer layers of the 
human are scalp and air. As there is no current that flows in 
the outer layers due to air which is non-conducting material. 
Therefore, the current density inside the outer air layer is zero. 
The current dipole of pyramid cells has the same current flown 
in and flow out. The dipole has six parameters including three 
translational parameters and three spherical parameters with a 
unit vector at a pint in the source space between two 
monopoles as shown in Fig. 10. 

 
Fig. 10. Dipole parameters [12] 

   .V E
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Fig. 11. Simple head model [9] 

 

Fig. 12. Realistic head model[24] 

The human head is a sphere and is composed of the 
conductivity tissues of skull and scalp. It is made of three 
concentric circles representing each circle  as a layer [18]. Its 
conductivities are modeled in terms of radial and tangential 
layers[19]. The prolate and oblate spheroids or eccentric 
spheres are modeled and discussed in the literature. The Berg 
approximation [20] represents a single-sphere model  for a 
three to four layer sphere model  for increasing the 
computation and  geometry accurateness [21, 22]. Simple head 
models are single layer spheroid models which are simple, fast 
and accurate one. The realistic head models with complexity 
are more numerical and realistic such as boundary element 
method (BEM)[19] and finite element method (FEM)[14, 23]. 

The realistic head models also called numerical models  
(Fig. 12)  in computational time are higher than multi-layer 
spheres or analytical models  (Fig. 11) due to formation of  
thousand pieces [25]. A good approach between spherical 
head model  and realistic head one  is counted  a good quality 
of  sensor-fitted approach i.e. exact on the location of the 
activity[26]. 

The BEM numerical technique calculates the surface 
potentials produced by current sources located in a piecewise 
uniform volume formed with isotropic conductivities 
structures [9, 27]. The pieces are made in such size that they 
are so small for yielding isotropic conductivities[28]. There 
are three boundaries with the three layers in spherical model. 
Each layer is put into pieces and is computed with small 
boundary elements. The distances of the layers from brain, 
skull and scalp to the center positions are 8 cm, 8.5 cm and 9.2 

cm, respectively[29]. Each layer is digitized in triangles, for 
computing the potential at its center (see Fig 13 and 14).  

The Green's first identity for integration is implemented to 
solve Poisson's equation in a realistic head model is the finite 
element method (FEM). The 3D volume conductor is digitized 
into small elements as shown in Fig 13 and Fig 14. 

 
Fig. 13. Meshes of  human head[14] 

Fig 13, illustrates 2D volume conductor digitized with 
triangles and Fig.14 states the mesh in 2D coronal slice view 
only. In summary, forward problem for brain source 
localization covers all the algorithms and theory related to 
scalp, conductive medium and measuring potential differences 
techniques. 

 

Fig. 14. Mesh in 2D coronal slice[12, 15] 

B. Inverse Problem 

The inverse problem is an ill-posed and non-unique 
problem due to a reason that there are infinite dipoles inside 
the cortical conductor and limited number of the electrodes 
over scalp for fitting the data causing the uncertainties.  
Generally, true model in  inversion problem  consists  of 
estimation problem and appraisal problem [15, 30] (see Fig 
15).   

Data

Estimated Model

True Model

Forward 

Problem

Estimation 

Problem
Appraisal 

Model

 
Fig. 15. Inversion problem of  physical model [46]  
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Two methodologies such as equivalent current dipole 
(ECD) for limited areas for underlying neural activities and 
linear distributed for whole volume are assumed for current 
source densities. [31, 32].  Several algorithms have been 
developed with a minimum of localization error and high 
resolution and less computational time. The hierarchy of the 
inverse solutions and their history are shown in Fig.16 and 
Fig. 17. respectively.   

The minimum norm estimation (MNE) estimates sources 
with 1 cm resolution [15]. It yields predicted information and 
provides better localization with increasing the number of 
magnetometers. It gives good resolution and current 
estimation. It provides improved localization error.  

The low-resolution electromagnetic tomography 
(LORETA) estimates all active, neighboring and boundary 
areas. It not only yields good time resolution but also provides 
the poor spatial resolution of the blurring images. Further, it 
yields less errors and used for depth sources. LORETA and its 
family use the current source density for reconstruction. 

The focal underdetermined system solution (FOCUSS) is a 
tomographic reconstruction scheme. It is high resolution non-
parametric technique. It has a good spatial resolution. 
FOCUSS is used for deep source localizations. Recursive 
Multiple Signal Classification (Recursive MUSIC) [33] is a 
modified form of a RAP MUSIC. It yields less error of 
localization and is easy for processing of computation. It can 
face the situations where there are   constraints or limits. 

 
Fig. 16. Solutions  of inverse problem [15] 

 

Fig. 17. History of solutions of the inverse problem [15] 

The hybrid weighted minimum norm (HWMN) [15]  is the 
modified  form of  LORETA [34, 39],  FOCUSS [35] and 
WMN [15, 36], It yields the smoothness with a long 
processing time and therefore  losses  data while computing. 
The standard LORETA (sLORETA) [40] yields uniform 
variance across the whole brain volume and yields zero 
localization error. The results are verified on experimenting on 
6430 voxels with having 5 mm spatial resolution. It has an 
exact localization with a zero error.  Exact LORETA 
(eLORETA) [25] yields the variance of unity. All its 
simulations are based on LORETA software where zero-bias 
creates zero-localization error. Its weight matrix yields correct 
value with minimized error (12 to 7 mm). It has also the 
access of the touch to deep sources. There are some 
comparative studies for sLORETA and eLORETA[37]. 
WMN-LORETA experiments are carried out through by both 
simulation and experimented basis with 138 electrodes. 
Firstly, resolution matrix is designed. In these experiments 
such as conditions of identity matrix are achieved. However, 
error is subsequently reduced and accuracy is enhanced with 
less execution time. In Recursive sLORETA-FOCUSS, 
sLORETA gives smoothness whereas FOCUSS gives sparse 
solution and increase localization error with 494.03 mm when 
experiments are conducted. Its processing time is reduced to 
330.45. Shrinking LORETA-FOCUSS a derived from 
LORETA and FOCUSS. It has the complexity of the weight 
matrix and iteration performance due to which it takes a time 
for processing. It provides good smoothness with low 
localization error. The sources construction with high spatial 
resolution is achieved.  It uses LORETA and current densities 
for smoothness thereby subsequently weight matrix is 
computed. Summary of the inverse methods and their 
comparison are given in Table II and Table III. 
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TABLE II. SUMMARY OF  INVERSE METHODS[10, 15] 

Method Characteristics/Comparison 

MNE[15, 38] 

 It has good resolution and current estimation and 
yields good localization error as compared to 

LORETA, WMN etc.  

 It fails for deep source localization and is 
incapable of localizing non-boundary sources. 

LORETA 

[39] 

 It is popular due to source localization and 
citations.  

 However it is incapable of improving low spatial 
localization. 

sLORETA [40]  

 It yields poor stability and blurriness in the 

mage.  

 It is a derived from LORETA and yields better 

localization. 

 It has poor resolution and poor performance for 

recovering multiple sources   

eLORETA[25] 

 It is derived method of  LORETA and gives 
authentic results in localization and handles the 

issue of variance very well. 

 Its low resolution and blurring in images 

increases. 

FOCUSS[35] 

 Its possibility of sources localizing is on edge 
and deep areas. 

 It yields spatial variations in good quantity. 

 It is crucial to bring out the features of the brain 

activity due to its low resolutions and 
blurredness. 

HWMN[15] 

 It is a derived from MN and LORETA and 

provides better estimation.  

 It uses LORETA and WMN for better 

estimation. 

 It takes more iterations for more accurate, deep 

localization and less errors. 

 It takes a large processing time.and these is a 

possibility of the loss of data due to continuous 

iterations and weight matrix involvement.  

shrinking 

LORETA-

FOCUSS[41] 

 It is derived from LORETA and FOCUSS. 

 Its results are not experimentally validated. 

 It provides better  minimized localization error. 

MUSIC[33]  
 It yields less localization error. 

 However, it takes a large processing time but 

there is a chance  of the loss of the data. 

RAP-MUSIC 
[42] 

 It yields good localization error but it takes a 
large processing time.   

 There are chances of the loss of data. 

 However, its random error and  noise problem 

increase the issues of its processing. 

WMN-

LORETA [15] 
 It yields better resolution if compared with 

LORETA and WMN separately. 

Recursive 
sLORETA-

FOCUSS [15] 

 It is an efficient in terms of processing and less 
localization error. 

TABLE III. COMPARISONS OF INVERSE METHODS[15] 

Method Resolution Time Validation 

MNE low high experiment 

LORETA low high experiment 

FOCUSS low low experiment 

Recursive MUSIC good low simulation 

sLORETA low high experiment 

Shrinking LORETA-FOCUSS low low simulation 

Hybrid Weighted MN low low simulation 

eLORETA low high experiment 

WMN-LORETA low low simulation 

RecursivesLORETA-FOCUSS low high simulation 

LORETA yields good localization error and estimated 
current density whereas the Shrinking LORETA- FOCUSS 
yields energy error, localization and maximum energy error. 
sLORETA- FOCUSS provides excellent localization error in 
simulations whereas recursive sLORETA-FOCUSS provides 
better processing time, accuracy and more accurate results. 
WMN-LORETA is a best method in terms of time processing 
and resolution.  

This was the summary of the approaches and their 
comparative analysis used for ill-posed inverse problem. 

C. Bayesian Approaches 

This approach has a vital role in source localization of the 
brain. Inversion scheme primarily consists of Bayesian 
approach. Much efforts are made to put the theoretical and  
mathematical approaches into empirical and experimental 
practices to locate sources of the underneath neural 
activities[43]. The optimized estimations are based on 
posterior and priori procedures called the Bayesian approach. 
EEG source localization depends on the estimation of priors or 
patches selected from parametric Bayes (PEB) so called 
empirical Bayes[44]. PEBs are simple parametric hierarchical 
linear models and parametric assumptions  involve the 
randomly addition of Gaussian noise at each  level[45]. The 
source space basically generates the data. The  background of 
using this function is to limit on log-evidence or Likelihood by 
using Gaussian process priors on different models so called 
priors or covariance components of given measurements  and 
best model automatically is selected from the hyperparameters 
by enforcing the conditional variances to minimum value [46]. 
The quality of using free energy and restricted maximum 
likelihood (ReML) are to get the grip on covariance 
components and hyperparameters [45]. These methods form 
an inversion scheme which helps in selection of the optimized 
priors either from sparse priors or distributed priors provided 
the nature of the data obtained. There are the definitely 
benefits for using inversion scheme such as  it is fast and 
consists  of the linear models for both said priors [47]. The 
empirical Bayes provide the best quantifying and relative 
information of spatial priors and accommodate multiple priors 
for the provision of more accurate source of the reconstruction 
of neural activity [48]. In empirical Bayes, different 
combinations of the priors so called sets of the models, are 
selected through the method of the model selection.  The best 
utilization of ReML as  log-likelihood  is to bring 
improperness in using parameters of the hyperparameters [49]. 
Selected model is defined in terms of the covariance 
components.   

Inversion scheme [50] is applied to the evoked highlighted 
neural activity by applying free energy bound or log-evidence 
of marginal likelihood or ReML objective function. The 
benefit of using ReML is that optimization can be carried out 
by selecting a specific model of covariance components from 
measurement of data irrespective of increasing the size and 
number of the resources. Empirical priors are the source 
estimated priors which can be observed during the desired 
pattern of the brain neural activity observed through EEG 
responses[51]. Its mathematical form is described as
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qN

i i

i

Q h C


  where priors are basically the components, 

partitions or the models which have large variances so called 
hyperparameters which are further spitted-up into a small 
group of the patterns called covariance components [52]. The 
evidences of the highly active regions of the neural activity 
with the local and compact support can be modelled as source 
priors. In Bayesian approach, the prior source covariance 
which are counted as weighted sum of multiple prior 
components are called as empirical Bayes as available in the 
literature as priors for source reconstruction[53]. The highly 
optimized combination of the compact and desired higher 
neural activity priors of the desired regions can be evaluated 
through evidences such as using Bayesian model approach. 
Hyperparameters have large variances. The variety of EEG 
responses can be observed though EEG responses. Such 
extreme situations can be addressed through minimum norm 
constraint and ARD solutions. The Bayesian model approach 
provides the log-evidences and Greedy search[54, 55] is 
iterated on evident provided patters or components for 
efficiently splitting the highest hyperparameters of the highest 
variances into two or more new components or partitions so 
called models[45]. Such iteration is repeated until the 
evidences are stopped for increasing and optimized results are 
obtained[56]. In a nutshell, both the greedy search and ARD 
schemes are used for optimizing the neural activity of EEG 
source localization. 

In parametric empirical Bayes (PEB) [57], several models 

of the source neural activities are estimated.  These are 

experimentally or empirically selected from the different 

regions of the brain.  The empirical priors on the sources are 

given by [58, 59]: There is a variety of picking up the priori 

models of neural activity. The closed and compact neural 

activity priors are particularly paid attention These are also 

known as model correlated sources[60]. Any groups of priors 

can be enhanced or compared with one another’s evidences so 

called Bayesian model comparison.  

A greedy search (GS) that splits highest variance or 
hyperparameter into more than two components and 
subsequently optimized parameters. This action is iterated 
until its evidence stops increasing [49]. In Automatic 
relevance determination (ARD) one can start with one 
component per pattern and use ARD to eliminate other unused 
and unnecessary patterns.  Inversion Scheme [50] is 
comprised of MN, IID, LOR and other MSPs. Specific 
designed M weight matrix which is also called mixture matrix 
as covariance components are used for optimization of 
estimating the reconstruction of the neural activity with the 
current density. In this scheme at sensors levels and noise 
levels optimized techniques are used for maximizing the 
current density [61].  Minimum norm (MN) Model is 

represented by Q I

 . This model asserts that all sources are 

active, with equal a priori probability and that none are 
correlated [50, 57]. Coherence (COH) model is a realistic 
model with two components modelling independent and 
coherent sources respectively.  Multiple sparse prior model is 

represented by components such as  1 1
, ...,

T T

N N
Q q q q q




modeling activity in N patterns[57, 62].  

III. CONCLUSION AND REMARKS 

In this article, several approaches of forward problem, 
inverse problem and Bayesian framework have been explored 
and discussed for EEG brain source localization in terms of 
their computational time, localization error, energy error, 
resolution etc.  An EEG brain source localization not only 
yields the complete solution of understanding brain 
abnormalities, mental diseases and cognitive brain actions but 
it also provides the best spatiotemporal solution of diagnosing 
the disorders of the brain such as epilepsy and tumors etc. The 
forward yields only potential measurements on the scalp 
which are calculated through the electrodes and efforts are 
made to remove the noises from the signals due to 
uncertainties of the three layers or mediums, coupling of the 
cortical surfaces and environmental noises or stimuli and 
electrodes used for experimental purposes. EEG minimum 
norm and listed LORETA family algorithms used for ill-posed 
inverse problem subsequently yields the good results in terms 
of resolution localization error and computational time of the 
active brain sources. Bayesian framework involves the 
optimized selection of the patches of the surface or volume of 
the cortical surface or head. Multiple sparse priors (MSP) 
algorithm-based Bayesian algorithm is targeted for 
optimization of the source localization. ReML, Greedy search, 
ARD and Coherence approaches are used as optimization 
techniques in terms of giving out the good results for the 
maximum free energy. The uncertainties such as unnecessary 
active regions or patches, unnecessary equivalent current 
dipoles or unnecessary coupling of neighbor regions of the 
brain are  surely removed to reach out at the exact active brain 
region for giving a maximum energy as discussed in Bayesian 
framework. However, there still more work is required on 
solving the forward problem and ill-posed inverse problems. 
There is a need of using exact analytical or numeral head 
models required. Conductivities and noise issues are yet to be 
improved by using the new techniques or algorithms of 
computational methods. The new integrated neuroimaging 
techniques with robust algorithms are yet to be worked out for 
giving better results in terms of spatiotemporal resolution, 
localization error, less processing time or even free energy.   
The multiple source prior technique seems to one of most 
advanced techniques which is capable for finding the most 
optimized source localization by removing unnecessary 
patches or their repetition. 

This was an entire overview of EEG signals-based source 
localization. Future study will deeply be extended to cover 
their latest research and mathematical background which will 
surely will cover all the issues in optimizing the results of the 
brain source localization using EEG signals. 

REFERENCES 

[1] Q. Tran, T. Le, C. Le, and T. V. Van, "Electrophysiological modeling in 
generalized epilepsy using surface EEG and anatomical brain 
structures," in International Conference on the Development of 
Biomedical Engineering in Vietnam, 2017, pp. 699-704: Springer. 

[2] A. Majkowski, Ł. Oskwarek, M. Kołodziej, and R. J. Rak, "An attempt 
to localize brain electrical activity sources using EEG with limited 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 9, 2018 

260 | P a g e  

www.ijacsa.thesai.org 

number of electrodes," Biocybernetics and Biomedical Engineering, vol. 
36, no. 4, pp. 686-696, 2016. 

[3] R. Cook, G. Bird, C. Catmur, C. Press, and C. Heyes, "Mirror neurons: 
from origin to function," Behavioral and Brain Sciences, vol. 37, no. 2, 
pp. 177-192, 2014. 

[4] M. A. Lancaster et al., "Cerebral organoids model human brain 
development and microcephaly," Nature, vol. 501, no. 7467, p. 373, 
2013. 

[5] M. Susta, H. Papezova, S. Petranek, and K. Sonka, "Brain activation 
sequences," Neuroendocrinology Letters, vol. 36, no. 8, 2015. 

[6] P. Milz, K. Oberauer, P. D. D. C. Kiper, and D. Lehmann, "Brain 
Electric Mechanisms of Modalities of Thinking," Universität Zürich, 
2016. 

[7] M. J. Hawrylycz et al., "An anatomically comprehensive atlas of the 
adult human brain transcriptome," Nature, vol. 489, no. 7416, p. 391, 
2012. 

[8] L. G. Kiloh, A. J. McComas, and J. W. Osselton, Clinical 
electroencephalography. Butterworth-Heinemann, 2013. 

[9] J. K. Mai, M. Majtanik, and G. Paxinos, Atlas of the human brain. 
Academic Press, 2015. 

[10] W. Khalifa, A. Salem, M. Roushdy, and K. Revett, "A survey of EEG 
based user authentication schemes," in Informatics and Systems 
(INFOS), 2012 8th International Conference on, 2012, pp. BIO-55-BIO-
60: IEEE. 

[11] A. Chaturvedi, "Analysing the Use of EEG, fMRI, PET and Behavioural 
Studies of Brain Lesioned Patients Associated with Non-Literal 
Language eg Metaphors, Sarcasm, Some Types of Humour Etc," 2017. 

[12] Hallez, Hans, et al. "Review on solving the forward problem in EEG 
source analysis." Journal of neuroengineering and rehabilitation 4.1 
(2007): 46. 

[13] R. Plonsey and D. B. Heppner, "Considerations of quasi-stationarity in 
electrophysiological systems," The Bulletin of mathematical biophysics, 
vol. 29, no. 4, pp. 657-664, 1967. 

[14] M. R. Lakshmi, D. T. Prasad, and D. V. C. Prakash, "Survey on EEG 
signal processing methods," International Journal of Advanced Research 
in Computer Science and Software Engineering, vol. 4, no. 1, 2014. 

[15] M. A. Jatoi, N. Kamel, A. S. Malik, I. Faye, and T. Begum, "A survey of 
methods used for source localization using EEG signals," Biomedical 
Signal Processing and Control, vol. 11, pp. 42-52, 2014. 

[16] C. H. Wolters, "Influence of tissue conductivity inhomogeneity and 
anisotropy on EEG/MEG based source localization in the human brain," 
Max Planck Institute of Cognitive Neuroscience Leipzig, 2003. 

[17] C. H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. A. Koch, 
and R. MacLeod, "Influence of tissue conductivity anisotropy on 
EEG/MEG field and return current computation in a realistic head 
model: a simulation and visualization study using high-resolution finite 
element modeling," NeuroImage, vol. 30, no. 3, pp. 813-826, 2006. 

[18] V. E. Montes Restrepo, "Determination of anisotropic ratio of the skull 
for EEG source localization in patients with epilepsy," in 11e FirW PhD 
Symposium, 2010, pp. 62-62: Universiteit Gent. Faculteit 
Ingenieurswetenschappen. 

[19] M. A. Jatoi et al., "EEG‐based brain source localization using visual 
stimuli," vol. 26, no. 1, pp. 55-64, 2016. 

[20] P. Berg and M. Scherg, "A fast method for forward computation of 
multiple-shell spherical head models," Electroencephalography and 
clinical neurophysiology, vol. 90, no. 1, pp. 58-64, 1994. 

[21] B. Cuffin, "Effects of local variations in skull and scalp thickness on 
EEG's and MEG's," IEEE Transactions on Biomedical Engineering, vol. 
40, no. 1, pp. 42-48, 1993. 

[22] N. Chauveau, X. Franceries, B. Doyon, B. Rigaud, J. P. Morucci, and P. 
Celsis, "Effects of skull thickness, anisotropy, and inhomogeneity on 
forward EEG/ERP computations using a spherical three‐dimensional 
resistor mesh model," Human brain mapping, vol. 21, no. 2, pp. 86-97, 
2004. 

[23] M. A. Jatoi, N. Kamel, A. S. Malik, I. Faye, and T. Begum, 
"Representing EEG source localization using finite element method," in 
Control System, Computing and Engineering (ICCSCE), 2013 IEEE 
International Conference on, 2013, pp. 168-172: IEEE. 

[24] T. Nyoni and W. G. Bonga, "Neuromarketing Methodologies: More 
Brain Scans or Brain Scams?," 2017. 

[25] R. D. Pascual-Marqui, "Discrete, 3D distributed, linear imaging methods 
of electric neuronal activity. Part 1: exact, zero error localization," arXiv 
preprint arXiv:0710.3341, 2007. 

[26] J. J. Ermer, J. C. Mosher, S. Baillet, and R. M. Leahy, "Rapidly 
recomputable EEG forward models for realistic head shapes," Physics in 
Medicine & Biology, vol. 46, no. 4, p. 1265, 2001. 

[27] M. A. Jatoi, N. Kamel, I. Faye, A. S. Malik, J. M. Bornot, and T. 
Begum, "BEM based solution of forward problem for brain source 
estimation," in Signal and Image Processing Applications (ICSIPA), 
2015 IEEE International Conference on, 2015, pp. 180-185: IEEE. 

[28] F. Costa, H. Batatia, T. Oberlin, and J.-Y. Tourneret, "Skull 
Conductivity Estimation for EEG Source Localization," IEEE Signal 
Processing Letters, vol. 24, no. 4, pp. 422-426, 2017. 

[29] B. Vanrumste, G. Van Hoey, R. Van de Walle, R. D. Michel, I. A. 
Lemahieu, and P. A. Boon, "Comparison of performance of spherical 
and realistic head models in dipole localization from noisy EEG," 
Medical Engineering and Physics, vol. 24, no. 6, pp. 403-418, 2002. 

[30] R. Snieder and J. Trampert, "Inverse problems in geophysics," in 
Wavefield inversion: Springer, 1999, pp. 119-190. 

[31] R. D. Pascual-Marqui, "Theory of the EEG inverse problem," 
Quantitative EEG analysis: methods and clinical applications, pp. 121-
140, 2009. 

[32] L. Duque-Muñoz, J. Martinez-Vargas, G. Castellanos-Dominguez, J. 
Vargas-Bonilla, and J. López, "Non-linear Covariance Estimation for 
Reconstructing Neural Activity with MEG/EEG Data," in International 
Work-Conference on the Interplay Between Natural and Artificial 
Computation, 2017, pp. 334-344: Springer. 

[33] J. C. Mosher and R. M. Leahy, "Recursive MUSIC: a framework for 
EEG and MEG source localization," IEEE Transactions on Biomedical 
Engineering, vol. 45, no. 11, pp. 1342-1354, 1998. 

[34] S. Ikeda, R. Ishii, L. Canuet, and R. D. Pascual-Marqui, "Source 
estimation of epileptic activity using eLORETA kurtosis analysis," BMJ 
case reports, vol. 2017, pp. bcr-2017-222123, 2017. 

[35] I. F. Gorodnitsky, J. S. George, and B. D. Rao, "Neuromagnetic source 
imaging with FOCUSS: a recursive weighted minimum norm 
algorithm," Electroencephalography and clinical Neurophysiology, vol. 
95, no. 4, pp. 231-251, 1995. 

[36] R. Khemakkhem, W. Zouch, A. Taleb-Ahmed, and A. B. Hamida, "A 
new combining approach to localizing the EEG activity in the brain: 
WMN and LORETA solution," in BioMedical Engineering and 
Informatics, 2008. BMEI 2008. International Conference on, 2008, vol. 
1, pp. 821-824: IEEE. 

[37] M. A. Jatoi, N. Kamel, A. S. Malik, I. J. A. p. Faye, and e. s. i. medicine, 
"EEG based brain source localization comparison of sLORETA and 
eLORETA," vol. 37, no. 4, pp. 713-721, 2014. 

[38] M. S. Hamalainen, "Interpreting measured magnetic fields of the brain: 
estimates of current distributions," Helsinki Univ. of Technol., Rep, 
1984. 

[39] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, "Low resolution 
electromagnetic tomography: a new method for localizing electrical 
activity in the brain," International Journal of psychophysiology, vol. 18, 
no. 1, pp. 49-65, 1994. 

[40] R. D. Pascual-Marqui, "Standardized low-resolution brain 
electromagnetic tomography (sLORETA): technical details," Methods 
Find Exp Clin Pharmacol, vol. 24, no. Suppl D, pp. 5-12, 2002. 

[41] H. S. Liu, F. Yang, X. Gao, and S. Gao, "Shrinking LORETA-FOCUSS: 
a recursive approach to estimating high spatial resolution electrical 
activity in the brain," in Neural Engineering, 2003. Conference 
Proceedings. First International IEEE EMBS Conference on, 2003, pp. 
545-548: IEEE. 

[42] J. C. Mosher and R. M. Leahy, "Source localization using recursively 
applied and projected (RAP) MUSIC," IEEE Transactions on signal 
processing, vol. 47, no. 2, pp. 332-340, 1999. 

[43] A.-S. Hincapié et al., "The impact of MEG source reconstruction 
method on source-space connectivity estimation: a comparison between 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 9, 2018 

261 | P a g e  

www.ijacsa.thesai.org 

minimum-norm solution and beamforming," NeuroImage, vol. 156, pp. 
29-42, 2017. 

[44] Y. Zhang, Y. Wang, J. Jin, and X. Wang, "Sparse Bayesian learning for 
obtaining sparsity of EEG frequency bands based feature vectors in 
motor imagery classification," International journal of neural systems, 
vol. 27, no. 02, p. 1650032, 2017. 

[45] M. Dashti and A. M. Stuart, "The Bayesian approach to inverse 
problems," Handbook of Uncertainty Quantification, pp. 311-428, 2017. 

[46] F. Costa, H. Batatia, T. Oberlin, C. D'giano, and J.-Y. Tourneret, 
"Bayesian EEG source localization using a structured sparsity prior," 
NeuroImage, vol. 144, pp. 142-152, 2017. 

[47] Y. Bekhti, F. Lucka, J. Salmon, and A. Gramfort, "A hierarchical 
Bayesian perspective on majorization-minimization for non-convex 
sparse regression: application to M/EEG source imaging," arXiv preprint 
arXiv:1710.08747, 2017. 

[48] W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E. 
Nichols, Statistical parametric mapping: the analysis of functional brain 
images. Elsevier, 2011. 

[49] J. López, V. Litvak, J. Espinosa, K. Friston, and G. R. Barnes, 
"Algorithmic procedures for Bayesian MEG/EEG source reconstruction 
in SPM," NeuroImage, vol. 84, pp. 476-487, 2014. 

[50] K. Friston et al., "Multiple sparse priors for the M/EEG inverse 
problem," NeuroImage, vol. 39, no. 3, pp. 1104-1120, 2008. 

[51] D. Wipf and S. Nagarajan, "A unified Bayesian framework for 
MEG/EEG source imaging," NeuroImage, vol. 44, no. 3, pp. 947-966, 
2009. 

[52] S. Hu, D. Yao, and P. A. Valdes-Sosa, "Unified Bayesian estimator of 
EEG reference at infinity: rREST," arXiv preprint arXiv:1802.02268, 
2018. 

[53] K. Sekihara and S. S. Nagarajan, "A unified Bayesian framework for 
MEG/EEG source imaging," in Electromagnetic Brain Imaging: 
Springer, 2015, pp. 119-137. 

[54] F. Goksu, N. F. Ince, and A. H. Tewfik, "Sparse common spatial 
patterns in brain computer interface applications," in Acoustics, Speech 
and Signal Processing (ICASSP), 2011 IEEE International Conference 
on, 2011, pp. 533-536: IEEE. 

[55] D. Meunier, S. Achard, A. Morcom, and E. Bullmore, "Age-related 
changes in modular organization of human brain functional networks," 
Neuroimage, vol. 44, no. 3, pp. 715-723, 2009. 

[56] K. Friston et al., "Bayesian decoding of brain images," Neuroimage, vol. 
39, no. 1, pp. 181-205, 2008. 

[57] J. Lopez, G. R. Barnes, and J. Espinosa Oviedo, Single MEG/EEG 
source reconstruction with multiple sparse priors and variable patches. 
2012, pp. 136-144. 

[58] M.-a. Sato et al., "Hierarchical Bayesian estimation for MEG inverse 
problem," NeuroImage, vol. 23, no. 3, pp. 806-826, 2004. 

[59] Y. Yousra, F. Lucka, J. Salmon, and A. Gramfort, "A hierarchical 
Bayesian perspective on majorization-minimization for non-convex 
sparse regression: Application to M/EEG source imaging," arXiv. org e-
Print archive, 2017. 

[60] S. Villena, M. Vega, S. D. Babacan, R. Molina, and A. K. Katsaggelos, 
"Bayesian combination of sparse and non-sparse priors in image super 
resolution," Digital Signal Processing, vol. 23, no. 2, pp. 530-541, 2013. 

[61] J. López, F. Valencia, G. Flandin, W. Penny, and G. Barnes, 
"Reconstructing anatomy from electro-physiological data," NeuroImage, 
vol. 163, pp. 480-486, 2017. 

[62] J. C. Ye, J. M. Kim, and Y. Bresler, "Subspace penalized sparse learning 
for joint sparse recovery," in Acoustics, Speech and Signal Processing 
(ICASSP), 2013 IEEE International Conference on, 2013, pp. 6039-
6042: IEEE. 

 


