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Abstract—The article introduces the mathematical concept of 

the topological anomaly matrix providing the foundation for the 

qualitative assessment of the topological organization underlying 

the large-scale complex networks. The basic idea of the proposed 

concept consists in translating the distributions of the individual 

vertex-level characteristics (such as the degree, closeness, and 

betweenness centrality) into the integrative properties of the 

overall graph. The article analyzes the lower bounds imposed on 

the items of the topological anomaly matrix and obtains the new 

fundamental results enriching the graph theory. With a view to 

improving the interpretability of these results, the article 

introduces and proves the theorem regarding the smoothness of 

the closeness centrality distribution over the graph’s vertices. By 

performing the series of experiments, the article illustrates the 

application of the proposed matrix for evaluating the topology of 

the real-world power grid network and its post-attack damage. 
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I. INTRODUCTION 

The distinctive feature characterizing the upcoming fourth 
wave of the industrial revolution lies in the rapid expansion, 
complication, and integration of the complex networks serving 
the needs of humanity and world economy [1, 2]. While 
enabling the development of the more efficient business 
processes leading to the increase in the produced outcome and 
quality of service, such tendency makes the entire society 
extremely vulnerable to the disruptions of the most critical 
infrastructural networks [3, 4]. Meanwhile, the functionality 
and reliability of any complex network heavily relies on its 
topology inspiring the emergent properties that could not be 
deduced from the separate network’s entities and arise only in 
result of their interaction [5, 6]. For example, the United States 
of America has suffered from several catastrophic blackouts 
caused by the cascading failures in the power grid steaming 
largely from the low redundancy of its topological design [7 – 
9]. These observations contribute to the particular 
reasonableness of assessing the topology of complex networks 
while making decisions regarding their reliability or need for 
the additional protection. Remark that this article focuses on 
considering the complex networks modeled by the undirected 

simple graphs  ,G V E . In turn, the topology of any graph 

G  could be regarded as the class of all possible graphs that are 

isomorphic to G . The evaluation of such topology is extremely 

challenging due to its underlying combinatorial nature and 
serves as a core problem of the emerging Big Data graph 
mining and analytics [10, 11]. In the prior works, the graph 
topology is assessed based on applying the quantitative metrics 
summarized in the review [12]. However, these metrics give a 
limited insight into the qualitative topological properties such 
as the concentration of bottlenecks inspiring the non-uniform 
load on the entities and links of the modeled network, which 
points to the presence of the research gap. Thereby, the 
objective of this article lies in constructing the mathematical 
object of the topological anomaly matrix providing the 
qualitative evaluation of the graph topology and its richness in 
bottlenecks, while satisfying the computational efficiency 
demands imposed to the instruments of the Big Data analytics. 

II. RELATED WORK: VERTEX IMPORTANCE METRICS 

The inhomogeneous topology of graph gives rise to the 
differentiation in the relative importance of its nodes for 
ensuring the normal activity of the modeled complex network. 
However, the vertex importance is difficult for analyzing due 
to the possibility of its consideration from the radically 
different conceptual viewpoints. Thereby, in the existing 
works, the comprehensiveness of assessing the importance of 
the graph’s nodes is ensured through applying a family of the 

formalized centrality metrics. In particular, the degree  d v  of 

the vertex v  reflects the extent of its local importance and 

serves as the simplest centrality metric. Nevertheless, the value 
of degree is incapable of capturing the position of the 
examined vertex within the entire graph. At the same time, the 
metrics of the closeness and betweenness centrality [13, 14] 
provide the formal way for evaluating the global importance of 
the graph’s nodes and are defined in the following way: 

Definition 1. The closeness centrality  c v  of the node v  

belonging to the vertex set V  of the connected graph G  

represents the inverted value of its average geodesic distance 
( ,  )d v k  to all nodes \{ }k V v , i.e.  
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Definition 2. The betweenness centrality  b v  reflects the 

likelihood that the examined vertex v  appears on the shortest 

path between a pair of other nodes and is calculated as follows: 

, \{ }

σ ( )
( ) .

σ

kl

klk l V v
k l

v
b v




   

Here σkl  denotes the total number of the shortest paths 

between the vertices k and l that differ in at least one edge, 

while σ ( )kl v  stands for the number of such paths transiting the 

vertex v. 

Intuitively, the closeness centrality could be interpreted as 
the velocity of the information broadcasting from the examined 
vertex to all other nodes of the graph. For example, by starting 
to spread from the nodes with the highest closeness centrality, 
the computer worms could potentially reduce the time required 
for infecting all vertices. For its part, the betweenness 
centrality could be viewed as the extent to which the examined 
vertex is involved as an intermediate in the communication 
flows between the other graph’s nodes. Moreover, the vertices 
that ensure gluing together multiple implicit communities take 
the crucial responsibility for the exchange of information 
between them and, thereby, are typically characterized by the 
high betweenness centrality (especially in the case of the strong 
community structure) [15, 16]. 

III. PROPOSED CONCEPT OF THE TOPOLOGICAL ANOMALY 

MATRIX AND ITS FUNDAMENTAL PROPERTIES 

The main contribution of this article lies in introducing the 
following mathematical object embodying the strategy of 
translating the local vertex-level characteristics into the 
property of the overall graph G : 

Definition 3. The topological anomaly matrix  GΩA  of 

the graph G  with respect to the base vector 

 1= ω ... ωnΩ  containing n  vertex importance metrics 

ω :i V  R  is given in the form of the following n n  array: 

 
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Here the value of each item  ω

ω
i

k
a G  lies within the range 

 1,1  and represents the bivariate correlation coefficient over 

all pairs of the set        ,ω ,ω ω ,ωi k i kDS G v v v V  . 

Note that  ω

ω
i

k
a G  is taken to be undefined if either ωi  or ωk  

is constant on the entire vertex set V  (i.e. if there exists such 

xR  that    ωi V x  or    ωk V x ). 

By definition, the matrix  GΩA  is symmetric, while its 

undefined components should be organized into the rows and 

columns crossing at the diagonal entries 
ω

ω
i

i
a  and, thereby, 

indicating the incapability of the corresponding metrics ωi  to 

distinguish the vertices of G . In turn, all defined components 

comprising the main diagonal of  GΩA  should be equal to 

one. For convenience, the matrices  GΩA  deprived of the 

undefined entries are referred to as perfect through this article. 

The selection of metrics into the base vector Ω  is driven 
by essential need for ensuring the descriptiveness of the 

constructed matrix  GΩA  in assessing the topology of G  at 

the optimal utilization of resources involved in the process of 
its calculation. In particular, the conceptual interpretability and 
computational efficiency of the metrics discussed in the 
previous section points to the reasonableness of introducing the 

canonical base vector defined as  = d c bΩ . At the same 

time, the canonical matrix  G
Ω

A  relying on such vector has 

the size of 3 3 , while its full specification requires values of 

only three items  d
ca G ,  d

ba G , and  c
ba G . 

Remark that the matrices  R
Ω

A  characterizing the 

purely random (and thereby unstructured) connected graphs R  
following the binomial distribution of vertex degrees tend to 
have the close-to-one values of all non-diagonal components. 
This tendency steams from the fact that, simply by chance, the 
higher-degree vertices demonstrate a larger probability of 
being located at the lower average distance to all other nodes 
and are likely to participate in the larger fraction of the shortest 
paths between them. In view of these considerations, every low 

(i.e. close-to-zero or negative) entry of the matrix  G
Ω

A  

clearly points to the significant non-randomness of the graph 
G  and reveals the presence of the unexpected anomaly in its 

topology. In total, the matrix  G
Ω

A  could encapsulate three 

major anomalies originating from the manner of fragmenting 
the graph G  into the cohesive implicit communities. 

In particular, the low value of  d
ca G  indicates that the 

larger number of the direct neighbors attached to an arbitrary 
vertex of G  does not shrink its farness from the rest nodes of 

the graph to the statistically significant extent. The main 
topological property responsible for producing such anomaly 
consists in differentiating the entire communities of G  into the 

central and peripheral ones (depending on the average distance 
to the other communities in terms of the inter-community 
edges). In this context, the high-degree vertices involved in the 
peripheral communities as well as the low-degree nodes 
occurring in the central ones serve as the key factors 

contributing to the reduce in the value of  d
ca G . 

Conversely, the topological anomaly evidenced by the low 

value of  d
ba G  implies that the higher-degree vertices do not 

act as the significantly more preferred intermediates in the 
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shortest paths of the graph G . The topological pattern 

provoking such effect is characterized by the incidence of 
many critical inter-community edges to the low-degree nodes 
along with the presence of the high-degree vertices adjacent 
exclusively to the members of their own communities. Finally, 

at the low value of  c
ba G , the ability of an arbitrary vertex to 

be involved into the shortest paths in the graph G  (and control 

the corresponding communication flows) is not strongly 
dependent on its average distance to the other vertices. From 

the topological viewpoint, the anomalous decrease in  c
ba G  

is driven by the nodes that, while being located in the central 
communities, are neither directly incident to the inter-
community edges nor lie on the shortest path between any pair 
of vertices equipped with such edges. 

In order to provide a fruitful insight into the entries of 

 G
Ω

A , let us introduce and prove the following fundamental 

relationship between the closeness centrality values of the 
adjacent graph’s nodes: 

Theorem 1. The closeness centrality ( )c v  of any vertex 

v  in the connected graph  ,G V E  is bounded below by 

 

1
( ) ,

1
2

m

V
c v

V
V

c v





 

 

where       max ,mc v c u v u E   stands for the highest 

closeness centrality among all direct neighbors of v . 

▲  Let us assume that v  is adjacent to the node u  having 

the closeness centrality of  c u . This, for its part, implies that 

every vertex  \ ,h V v u  could be reached from v  based on 

the walk (i.e. sequence of edges with allowed repetitions) 

composed of the edge  ,v u  and shortest path from u  to h . 

Accordingly, the geodesic distance between v  and h  is 

bounded above by the condition    , , 1d v h d u h  , while 

 , 1d v u  . In view of this observation, the entire closeness 

centrality of v  is constrained in the next manner: 

 
 

\{ , }

1
( ) ;    θ , 1 ( ,  ).

2 θ ,
h V v u

V
c v v u d u h

V v u



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 
  

In turn,  θ ,v u  could be expressed based on the closeness 

centrality of u  as      θ , 1 /v u V c u  , which completes 

deriving the desired relationship. At the same time, the increase 

in ( )c u  over the whole allowed range  0,1  leads to the 

monotonic growth of the imposed bound at any fixed 3V  . 

This remark clearly points to the largest restrictiveness of the 
bound produced by the neighbor with the highest closeness 
centrality. ▼ 

The most significant implication of the above theorem lies 
in the smooth nature of distributing the closeness centrality 
values over the graph’s vertices. On the contrary, the values of 
the betweenness centrality could be distributed in much more 
rugged manner implying the extreme differences between the 
adjacent nodes. For example, each leaf vertex l , by definition, 

is associated with zero betweenness centrality   0b l   

regardless the properties of its single neighbor. Conversely, the 
closeness centrality of l  takes the lowest possible value 

satisfying the bound given in Theorem 1. Remark that such 
bound demonstrates the close-to-linear behavior at the low 

values of  mc v  (since its derivative with respect to  mc v  

approaches one as   0mc v  ). This observation clearly 

shows that the leaf nodes of the sparse large-scale graph G  

typically tend to have almost the same closeness centrality as 
their neighbors. In view of such relationship, the leaf vertices 
appearing in the central communities are characterized by the 
relatively high closeness centrality compared to the other 
graph’s nodes and, thereby, serve as the most evident 

contributors to the reduce in the value of  c
ba G . 

IV. ANALYSIS OF THE LOWER BOUNDS IMPOSED ON THE 

ENTRIES OF THE CANONICAL TOPOLOGICAL ANOMALY 

MATRIX 

Meanwhile, the anomalous effects indicated by the matrix 

 G
Ω

A  are not inspired solely by the intentional self-

organizing process of the complex network modeled by the 

graph G . Additionally, the values of  d
ca G ,  d

ba G , and 

 c
ba G  are affected by the structural constraint taking the form 

of the vertex degree multiset     D G d v v V   containing 

the degrees of all nodes in G . Each multiset  D G , for its 

part, characterizes the family  ΓD G  composed of all non-

isomorphic graphs  ΓD GG  such that    D G D G  . In 

this sense, the specification of  D G  restricts the possible 

topologies of G  only to ones contained in  ΓD G  and imposes 

the structural bounds on the components of  G
Ω

A . 

Furthermore, such quantitative characteristics of G  as the 

order V  and density     φ 2 / 1G E V V   are derived 

from  D G  and by themselves provide the lower bounds on 

the items of  G
Ω

A . For convenience, let us denote the 

minimum values of  d
ca G ,  d

ba G , and  c
ba G  over all 

graphs G  containing V  nodes and having the density of 

 φ G  respectively by   ,φd
cm V G ,   ,φd

bm V G , and 

  ,φc
bm V G . Notice that all these lower bounds are defined 

over the domain restricted by    φ φ 1tree V G  , where 
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      φ 2 1 / 1tree V V V V   . Such restriction steams 

from the impossibility of constructing any connected graph 
sparser than a tree along with the presence of only undefined 

items in the matrix  K
Ω

A  of each complete graph K  having 

all possible edges. 
With a view to simplifying the discussion of the results 

given in Fig. 1, let us use the notations   φd
c km G , 

  φd
b km G , and   φc

b km G  for the dependences of 

  ,φd
cm V G ,   ,φd

bm V G , and   ,φb
cm V G  on 

 φ G  at the value of V  fixed to k  (representing slices of the 

illustrated surfaces). As evident from Fig. 1a, the dependence 

  φd
c km G  for any considered k  exhibits a single 

minimum located close the lowest allowed density  φtree k . 

Moreover, such minimum becomes deeper with the increase in 
k , which is directly attributed to the growing number of 

possible topologies. Another notable feature of the analyzed 
surface consists in the presence of the wide plateau-like region 

where   ,φd
cm V G  takes the close-to-one values. While 

being located at the high density  φ G , this region complies 

with the limited suitability of the dense graphs to the 
elaboration the high-modular topology underlying the 
emergence of the structural anomalies. Conversely, the tree 
graphs could be strongly segregated into the sparse implicit 
communities, which acts as an explanation for the relatively 

low values of   ,φd
c treem V V . However, the requirement 

regarding the sparsity of communities also hinders the 
formation of the structural anomalies. Accordingly, the minima 

of all considered dependences   φd
c km G  are slightly 

deviated from  φtree k . For example, Fig. 1a depicts the graph 

7G  responsible for producing the minimum of    7φd
cm G . 

Remark that this graph implies the inclusion of the three-
degree vertices into the peripheral communities (represented by 
cycles) and placement of the two-degree node as the connector 
between these communities. As a result, such connector is 
associated with the largest closeness centrality compared to all 
other vertices. The graphs on six or fewer nodes, in turn, could 
not contain the lower-degree vertex characterized by the larger 
closeness centrality than the higher-degree one due to the 
influence of the structural restrictions. 

At the same time, the shape of the surfaces constructed in 
Figs. 1b and 1c requires the more careful investigation. The 
distinctive feature expressed by the experimentally registered 

dependences   φd
b km G  and   φc

b km G  consists in the 

presence of multiple local minima whose number grows with 
the increase in k  (one at 4k   and 5k  , two at 6k  , and 

three at 7k  ). Remark that for every considered k , the local 

minima of both   φd
b km G  and   φc

b km G  are exhibited 

at the identical graph topologies and same values of  φ G . 

Furthermore, the presented results allow noticing that the 

bounds   ,φd
bm V G  and   ,φb

cm V G  are lower than 

  ,φd
cm V G  at the intermediate density  φ G . These 

effects are fully attributable to the fact that the betweenness 
centrality is capable of producing the rugged distributions over 
the graph’s nodes, while the closeness centrality is unavoidably 
subjected to the smoothing requirement proved in Theorem 1. 

The inspection of the callouts in Fig. 1 shows that the 

topologies underlying the local minima of   φd
b km G  and 

  φc
b km G  are characterized by the presence of the densely 

interconnected group of the highest-degree vertices along with 
the inclusion of the low-degree nodes into the chain-like 
substructures. Moreover, the collected results allow 
discovering that the formation of such topologies is driven by 
the hidden fundamental rules. In particular, each graph labeled 

in Fig. 1 as 1
kG  for  5,6,7k  could be obtained based on 

constructing the diamond graph (i.e. complete graph on four 
vertices with one removed edge) with the subsequent linking of 
its two-degree nodes by the path containing 3k   edges. Each 

graph labeled as 2
kG  for  6,7k , in turn, contains such basic 

substructures as the three-length cycle 3C  and star 3kS   

represented by a tree with 4k   leaf vertices. Its formation 

involves placing all possible edges between the nodes of 3C  

and  3 \kS r , where r  denotes the central node of the star 

3kS  . These trends suggest that the additional local minima 

arising in the dependences   φd
b km G  and   φc

b km G  

with the increase in k  are caused by the graph topologies 

following the new fundamental rules. 

V. APPLICATION OF THE PROPOSED MATRIX FOR 

ASSESSING THE TOPOLOGY OF THE POWER GRID NETWORK 

AND ITS POST-ATTACK DAMAGE 

The role of this section lies in demonstrating the descriptive 
potential of the introduced mathematical structure in evaluating 
the qualitative topological properties of the real-world complex 
networks. As a sample dataset for investigation, this work uses 
the benchmark model of the power grid infrastructure of the 
United States of America available at the open-access network 
collection [17] and given by the undirected graph 

 ,P PP V E . Notice that this graph is connected and contains 

4 941 vertices reflecting the facilities responsible for producing 
and distributing electricity along with 6 594 edges modeling 
the high-voltage transmission lines. The canonical matrix 

 P
Ω

A  calculated for the described graph P  is given by 

  0.2306d
ca P  ,   0.2766d

ba P  , and   0.3536c
ba P  . 

These values indicate the involvement of all considered 
structural anomalies in the topological organization of P , 
which serves as the natural result for the spatially distributed 
technological man-made system needing the constant 
supervision for preserving the desired functionality. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 9, 2018 

46 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. Three-dimensional plots showing the lower bounds   , φ
d

cm V G ,   , φ
d

bm V G , and   , φ
c

bm V G on entries of the matrix  GΩA as 

functions of the graph order V  and density  φ G . All given continuous surfaces were constructed by processing the scattered points representing the 

experimentally calculated data with the bilinear interpolation scheme. In addition, the surfaces are equipped with the callouts depicting the graph topologies 

underlying the minima of the considered bounds each fixed V . The size size and color of vertices in every callout graph encode respectively their closeness and 

betweenness centrality (the largest size and red color correspond to the highest values of metrics). 
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The more in-depth analysis shows that the sets of pairs 

 , ,DS P d c  and  , ,DS P d b  underlying the calculation of 

the correlation coefficients  d
ca P  and  d

ba P  are organized 

in line with inverted cone-shaped pattern of heteroscedasticity 
implying the decrease in the variability of the closeness and 
betweenness centrality values of nodes with increasing their 
degree. Remark that the emergence of such phenomenon 
steams heavily from the vertex degree distribution of P  
pointing to the presence of fewer nodes accommodating more 

neighbors. In turn, the set  , ,DS P c b  constituting the basis 

for computing the component  c
ba P  exhibits the direct cone-

shaped form of heteroscedasticity characterized by the 
tendency of vertices with the higher closeness centrality to 
demonstrate the larger variability of the betweenness centrality 
values. 

With a view to illustrate the usefulness of applying the 
proposed matrix as a measure of the topological damage, let us 
consider the attack on P  implying the removal of all its nodes 
having the degree of at least t , i.e. comprising the subset 

    Ψ t v d v t  . The post-attack graph on the remaining 

nodes of  \ Ψt
P PV V t  is represented by  ,t t

t P PP V E , 

where         \ , Ψ Ψt
P PE E v v v t v t     . In turn, let 

us use the notation  ,t t
t W WW V E  for the largest connected 

component of tP . At the high fraction   /t t
W Pf t V V , tW  is 

additionally referred to as the giant component of tP , while its 

topology accumulates the majority of damage that is not related 
to the connectivity issues [3]. 

Fig. 2 illustrates the application of the matrix  tW
Ω

A  for 

assessing such damage by presenting the experimentally 

calculated values of its components  d
c ta W ,  d

b ta W , and 

 c
b ta W  as functions of the degree threshold t . Remark that 

with the decrease in t , all obtained dependences demonstrate 

the tendency to fall after the plateau-like region and reach their 

global minima at the same critical threshold 6ct  . 

Meanwhile, all post-attack graphs tP  for ct t  are deprived of 

the giant connected component (as evidenced by the 

dependence of  f t  on t ), while their subgraphs tW  are trees. 

In light of these observations, the sharp growth of  d
c ta W , 

 d
b ta W , and  c

b ta W  at the subsequent reduce in t  is driven 

by the structural constraints studied in the previous section. For 

its part, the graph 
ct

W  corresponding to the global minima of 

the traced dependences is characterized by the most significant 
anomalies reflecting the accumulation of the largest topological 
damage. Conceptually, with the decrease in t , such damage 

stimulates the collapse of 
ct

W  into the numerous small 

connected components. Furthermore, the dependence of 

 d
c ta W  on t  demonstrates the deepest global minimum 

  0.0784
c

d
c ta W  . This result allows noting that the 

topological damage of 
ct

W  is expressed primarily by the more 

significant differentiation of its communities into the central 
and peripheral ones, which follows from the degradation of the 
inter-community relationships. 

 

Fig. 2. Entries of the matrix  tWΩA  associated with the largest connected 

component tW  of the post-attack graph tP  obtained by deleting all vertices 

with the degree of at least t  from the graph P  modeling the power grid 

network. To trace the significance of the obtained results for the overall graph 

tP , the plot additionally gives the fraction of its vertices included in tW . 

VI. CONCLUSIONS 

The findings presented in the preceding sections clearly 
substantiate the crucial role of the topological anomaly matrix 

 GΩA  in discovering the unexpected topological patterns of 

the real-world complex networks and producing the new 
fundamental results advancing the frontiers of the graph theory. 

The canonical form of the proposed matrix  G
Ω

A  is 

recommended for the widespread usage, while the need for 
performing the more in-depth analysis could be addressed by 
applying the matrices of larger size relying on the extended 
base vectors containing additional metrics. Conceptually, at the 

low values of  d
ca G  and  d

ba G , the network modeled by 

the graph G  is characterized by the tendency of the entities 

accommodating only a few neighbors to act as hubs managing 
the significant portions of traffic. In turn, the links attached to 
such entities are subjected to the enhanced risks of overloading 
and, thereby, play a role of the primary structural bottlenecks. 

Meanwhile, the low value of  c
ba G  is caused by the entities 

that, while being located close to all other nodes, do not use 
their beneficial geodesic position to support the traffic 
transmission in the network and, in this sense, contribute to the 
formation of bottlenecks. In sum, the opportunity of ensuring 
the balance between the descriptive potential and 

computational complexity of the matrix  GΩA  (through the 
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selection of metrics into the base vector Ω ) allows its 
consideration as the promising tool in the Big Data graph 
mining and analytics. Due to its usefulness in describing the 
topological damage (as illustrated in the previous section), the 
topological anomaly matrix could be potentially applied as one 
of the robustness metrics in assessing the attack tolerance of 
complex networks. Similarly, the proposed matrix could assist 
in detecting the differences in the topological organization 
between the whole network and its important subnetworks 
(such as the rich-clubs). Another possible application lies in 
tracing the evolutionary topological transformation of complex 
networks (by comparing the matrices calculated for the giant 
connected components of the graph models constructed for the 
series of the time-indexed network snapshots). 
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