
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

568 | P a g e

www.ijacsa.thesai.org

Level of Confidence in Software Effort Estimation by

an Intelligent Fuzzy - Neuro - Genetic Approach

Poonam Rijwani
1
, Dr. Sonal Jain

2

Research scholar
1
, Associate professor

2

JK Lakshmipat University

Jaipur, Rajasthan

Abstract—Organizations are struggling to deliver the

expected software functionality and quality in scheduled time

and prescribed budget. Despite availability of numerous

advanced effort estimation techniques overestimation and

underestimation occur on a vast scale and results in project

failures and significant loss to the organization. The paper

proposes machine learning based approach to calculate the

optimized effort and level of confidence. Genetically trained

neural network evaluates the optimum effort for given

COCOMO II variables. The level of confidence is evaluated by

fuzzy logic and indicates the percentage that the predicted effort

will not exceed the limits.

Keywords—COCOMO II; artificial neural networks; genetic

algorithm; fuzzy logic

I. INTRODUCTION

Human dependency on software is increasing continuously.
Today most of the goods and services are realized with
software systems. Software has become major driving force for
progress even in domains that were traditionally reserved as
completely mechanical or hardware systems, for instance
major advances in automobile industry are being realized with
software development. Companies spend 4-5 percentage of the
revenue on software development [1]. The figure is as high as
10 percent in highly IT dependent sectors, for instance
telecommunications and finance [1].Thus, functionality and
complexity of software systems is increasing manifold.
Simultaneously time to market and cost should be reduced to
stay competitive. In United States 250 billion dollars are spent
each year on IT development [2]. Project management and
Effort estimation are key factors for success of a software
project. Despite much research and technological advancement
in effort estimation techniques, proportion of failed software
projects is huge[2,3].According to the Chaos report submitted
by Standish Group[2] only 16.2 percent of the projects are
successful ,57.2 percent projects are over-budget and provides
lesser functionalities than specified and 31.1 percent of the
projects are cancelled during their development cycle. The
percentage of the successful, challenged (over-budget with less
functionality) and impaired (cancelled) projects is shown in Fig
1.

Project failure can be defined as combination of cost
overruns, late deliveries, poor quality, and/or developing a
product that does not get used. The two crucial reasons for
failure of most software projects are Overestimation and

Underestimation of the software effort [4]. Most projects either
cost more than they return or fail to deliver required projects in
the expected time. Both the scenarios lead to huge loss or may
also result in termination of the whole project. R. Charette [3]
suggested unrealistic project goals and inaccurate estimates of
needed resources as principal factors that lead to project
failure. A. Trendowicz and etal [2] pointed that most of the
effort estimation techniques provides point estimates with
hardly any support for risk management if project overruns the
expected cost. Moses and etal[4] in their research concluded
that in addition to estimates the effort estimation should also
specify a Level Of Confidence associated with the calculated
effort in order to compensate the uncertainty associated with
effort estimation.

II. RELATED WORK

A. What research has been Conducted so far?

For software effort estimation, numerous methods have
been examined specifically data driven soft computing
methods such as artificial neural networks, regression trees,
evolutionary computing, rule-based induction, fuzzy logics etc.
These methods exhibit many advantages like regression over
other standard methodologies. Literature of software effort
estimation endorse that important product feature
characteristically reflects the software size which exactly
impact efforts. Basically it is used to build cost models.

Initially, almost all models are based on the size of metrics
which contemplates numerous coding lines coded for a
software project i.e. lines of code (LOC) or thousands of
source line code (KLOC), as shown in COCOMO [5], or
function points (FP) which is there in models like Albrecht‟s
FP i.e. Function Point Analysis [6].

Many researchers analyze the feasibility of evolving
software effort estimation methods exhausting various
methodology, parameters, datasets, etc. In the comparative
analysis study given by [7], amalgamation of estimation
methods may generate more reliable, accurate cost estimation
for software development as it is displayed that no method is
good or bad in all the situations. Review papers given by [8]
[9] grasp a complete description of such studies. In review
paper [10], the effort estimation was assessed by back
propagation Artificial Neural Networks on datasets such as
Desharnais and ASMA, generally through system size to
determine the correlation of size with effort.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

569 | P a g e

www.ijacsa.thesai.org

Fig. 1. Percentage of successful, challenged and impaired projects in large, medium and small organizations

The method produced reassuring estimates represent that
the model need an additional methodical advance method to
develop the architecture and parametric settings in order to
achieve improved outcomes. In paper [11], the effort
estimation evaluation of the relationship between effort and
size analyzed using Genetic Programming technique in which
advanced tree composition displaying number of power, linear,
quadratic type common equations. The methodology
lengthened to appropriate desirable stages of prediction
correctness through hardly the size attribute but also approved
to achieve additional enhancements.

 Kumar et al. proposed a model exhausting Particle Swarm
Optimization (PSO) for tuning the elements of primary
COCOMO model to compute the effort accurately considering
hardly KLOC factor [12].

Finnie et al. [13] conferred a comparison of statistical
regression based model with other artificial Intelligence based
estimation models for evaluation of software development
effort. The researcher establish that statistical regression model
underperformed for difficult and complex software projects as
the Artificial Intelligence based models gives satisfying
evaluation results. They studied dataset amidst Projects from
17 organization and Desharnais. As an estimation criterion
MMRE was used. In 2002 another researcher Heiat [14]
examined Feed Forward Neural Networks with function point
and Radial Basis Neural Network with Source Lines of Codes
for various datasets including projects of different generation
languages. The results embodied that artificial neural network
method is prudent with regression though a third generation
language data set is used. P.Rijwani et-al [15] used hit & try
method to determine best network architecture, in an
experiment for the training network using back propagation.
For software effort estimation a FLANN was proposed by
Trimula Rao [16] which generates effort and hence processes
the final layer output. It has a drawback that the relation
between input and output is not equitable.

Investigation on back propagation Artificial Neural
Network of 2-2-1 design based on dataset of NASA that
includes eighteen projects. The inputs were development
methodology and KDLOC and output was effort.

Attarzadeh [17] in which 17 cost drivers and 5 Scale factors
were used as inputs. Sigmoid activation function is utilized
while creating the network to achieve post architecture of
COCOMOII model. The COCOMO algorithm is compared
using Pred (0.25) and the results are shown in terms of MMRE.
An innovative software development for effort estimation was
proposed by Attarzadeh [24], exhausting neural networks, in
which weights of the network were adjusted in such that it
resulted in COCOMO II model. The neural network method
suggested gives better result when related to COCOMO model
after proper training. Even though back-propagation for neural
networks is focused, complexity arises for adjusting weight and
bias net parameters during training like slow convergence,
sensitive to arbitrary initial weights, entering local minima,
difficulty in selecting explicit optimum network configuration.
The preeminent efficiency of genetically trained neural
networks is mentioned in various researches. For instance After
a series of experiments and simulations Shukla[22] concluded
that the genetically trained neural networks outperforms back
propagation trained and quick propagation trained neural
networks in software effort estimation. The recommended
model evaluates software development effort in the function of
seventeen cost drivers and five scale factors. Thus it is evident
that over the years improving the accuracy of software effort
estimation has remained main concern of research with little
attention being paid to quantifying the uncertainty involved in
effort estimation techniques.

B. Loopholes in Existing Research

Many systematic surveys have been conducted on software
effort estimation. Moløkken and Jorgensen [30] provide an
exhaustive review of surveys in software effort estimation.
They concluded that most of the projects (60-80 percent) suffer
from effort and/or schedule overruns. However the percentage
overrun (30-40%) is significantly lower than suggested by
Chaos report by Standish Group (80%). Jorgensen and
Sheppard [29] identified and reviewed 304 research papers
published in 76 journals. They found that majority of the
research in software effort estimation has remained
concentrated on effort estimation methods and less research is
done on uncertainty assessments, data set properties and
measures of estimation performance. The authors also

9

61.5

37.1

Large companies

16.2

46.7

29.5

Medium companies

28

50.4

21.6

Small companies

 Successful Projects Challenged Projects Impaired Projects.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

570 | P a g e

www.ijacsa.thesai.org

proposed that most of the research relies on historical dataset
for evaluation and validation of effort estimation models, only
a few provide real life evaluations. The different estimation
methods used in industries are shown in Fig 2.Presently Expert
judgment is the prominent estimation method used by
organizations [26, 40].The reason is it cannot be ascertained if
formal methods are better or weaker than expert judgment [27].
Identification the human factors affecting effort estimation [28]
and development of practical guidelines are crucial to get
benefitted from expert judgment. Applications of software
effort estimation is summarized in Fig 3.

Fig 4 shows the number of papers published from the year
1996 to 2016 related to software effort estimation J.Moses[4]
suggested that Effort estimation using algorithmic models,
statistical prediction systems or machine learning approaches,
e.g. Case Based Reasoning (CBR), Artificial Neural Networks
(ANN) or Rule Induction (RL), under perform when compared
to subjective estimation given by human estimators. The author
also added that the prediction methods does not provides any
support for decision making in case if the actual effort is
greater than or less than the predicted effort. The author
developed an approach by using Bayesian Inference to improve
effort estimation consistency. B. Clark and etal[20] developed
a multiple regression based effort calibration strategy. D.Yang
and etal [21] proffered that software industry suffers from
frequent cost overruns, and the software cost estimation
remains a challenging issue. The authors developed a model
for accounting the uncertainty based on Bayesian belief
networks.

Fig. 2. Effort Estimation techniques used in industries

Fig. 3. [25]Papers published over past years about different estimation

techniques.

Fig. 4. Papers published over past years about different estimation

techniques

III. IMPLEMENTATION DETAILS

The block diagram of the adopted methodology is shown in
Fig4. Genetic Algorithm is used for improving the output of
neural network. Fuzzy inference and genetically trained neural
networks are employed independently to evaluate level of
confidence and optimized effort. The main form or GUI
constructed in MATLAB is shown in Fig 5. . The GUI prompts
user to input COCOMO II variables. The user can click on the
optimized effort button on the calculate panel for the GANN
[3] predicted effort in person months. Similarly level of
confidence button is pressed to obtain the probability that the
effort will not exceed the specified limits.

A. Dataset Generation

For the present work COCOMO 81 dataset available on
PROMISE repository [18] was converted to COCOMO II
dataset using the tool Rosetta stone [33].The tool is developed
at IBM research in order to make COCOMO estimates
functional with COCOMO II model. The output is
development effort measured in man-months. The above
mentioned COCOMO 81 dataset was established from
exploration of sixty three developed software projects.

B. Network Topology

The model is created with one hidden layer in MLF()
neural network .One hidden layer with arbitrary units is
sufficient for “Universal Approximation Property”[23].There is
no rule of thumb for determining number of hidden units to be
used, as it depends upon critical factors such as number of
training cases and complexity of classification and learning. A
convenient way is to try many different networks, calculate the
generalization error for each network and select the network
with minimum generalization error [23].Following the above
rule, we performed a number of hit and trial experiments from
2 to 20 nodes.

The optimum topology was found to be 23-10-1 i.e. 23
input nodes, 10 nodes in hidden layer and 1 node layer (Fig 5).

0 20 40 60 80 100

Multiple…

Regression

Fixed(COCOMO,…

Single expert

Analogy based

0 50 100 150 200 250

Estimation by analogy

Size metrices

Phase wise effort…

Estimation for…

Soft computing…

Expert judgement

Neural networks

Factors affecting cost

61

6

7

20

16

8

5

1

1

0 20 40 60 80

Estimation method

Production Function

Calibration of models

Size measures

Organisational issues

Uncertainity assessments

Measures of estimation…

Dataset properties

Others

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

571 | P a g e

www.ijacsa.thesai.org

The 23 neurons in input layer correspond to the 23 input
variables of COCOMO II model (kloc, 5 Scale Factors, 17
Effort Multipliers). The node in output layer represents the
optimized effort. The input to neural network as scale factors
and effort multipliers is be represented by binary vectors (
[]). The COCOMO II variables are converted into binary

vectors by range normalization such that such that (

[]) The vector O represents output obtained in person-

months. And are weight parameters or synaptic strength

connecting hidden layer to output layer and input layer
respectively.

O (∑

)= f(∑

) (1)

 (∑

) (2)

C. Training The Network

Genetic algorithm is employed for training the neural
network. Fig 6 represents the algorithm of training neural
network by genetic algorithm. The preeminent efficiency of
genetically trained neural networks is mentioned in various
researches. For instance After a series of experiments and
simulations Shukla [22] concluded that the genetically trained
neural networks outperforms back propagation trained and
quick propagation trained neural networks in software effort
estimation The suitable values for control parameters of
genetic algorithm have been found by running various
simulations and have been listed in Table 1. We have used
binary string chromosomes. Six features (very low- vl, low-l,
nominal-n, high-h,very high-vh, extra high-xh) are considered
for each cost driver and subsequent weights are encoded with 3
bits(0-n,1-vl,2-l,3-n,4-h,5- vh,6-xh,7-n).0 and 7 are assumed
default values. Fitness function is reciprocal of MMRE as
genetic algorithm maximizes the fitness function and a low
Roulette Wheel selection:

Following are the steps for Roulette Wheel selection:

1) Evaluate the sum of the fitness value of all individuals

in given population...

2) Calculate probability of selection of a particular

individual by dividing its chromosome’s fitness by the total

fitness values of the population.

3) Divide the roulette wheel into sectors based on

probabilities calculated in the second step.

4) Spin the wheel ‘n’ number of times. The individual

corresponding to the sector pointed by the pointer is selected.

The probability that an individual is selected from a
population of n individuals is given by equation, where is
fitness value of element.

∑

 (3)

 (4)

Fig. 5. Genetically trained neural network.

Fig. 6. Network Topology

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

572 | P a g e

www.ijacsa.thesai.org

Fig. 7. Membership functions for STOR

Fig. 8. Fuzzy rules Fuzzy Inference

Fuzzy logic is close to human interpretation of truth. This
property can be utilized in effort estimation practices to
balance the inherent imprecision with uncertainty to determine
the level of confidence. The level of confidence indicates the
uncertainty or the probability of overestimation or
underestimation. The uncertainty can not only be used to
improve the estimation consistency but can also be used in
making statements to client indicating the chances of
overestimation or underestimation.

Literature reveals that there are numerous approaches for
incorporating fuzzy logic in effort estimation models. However
available research on organization specific effort dependencies
is scarce. For instance a company „A‟ is facing frequent
underestimation on its past projects. It is possible that the value
of COCOMO variables used by them make it inclined to
Underestimation. Suppose the assigned value of Programmer
capability is high but due to some discrepancies the actual
programmer capability is lower than expected. Such conditions
can occur frequently while calculating software effort by
formal methods because of following reasons:

1) A huge amount of information is required in the

starting phase.

2) Error due to human factor.

The developed fuzzy inference system calculates
probability of overestimation. This acts as a warning system
for effort estimators and prompts them to review the process
and/or set appropriate risk factors (Table2).

Dataset preparation: The historic dataset is converted into
probability distribution functions of 23 input variables. In the
proposed model conditional probability is used as basis for
forming fuzzy rules. By probability theory conditional
probability is defined as probability of occurrence of an event
(A) by assertion that another event (B) has already occurred.
The event A is hypothesis and the event B is observed
evidence. It is expressed mathematically by equation

 ()
 ()

 ()
 () (5)

Here A denotes occurrences of overestimation and B
denotes instances of values of input variables. For instance P
(O/STOR=1) denotes the probability of overestimation
provided that the selected value of STOR is nominal. The
model is based on chances of overestimation as
underestimation and overestimation are mutually exclusive
events. Thus, if probability of one is known the probability of
other can be calculated easily.

 () ()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

573 | P a g e

www.ijacsa.thesai.org

The conditional probability for every value of each input

variable is calculated and subsequently mapped into linguistic
fuzzy rules. The developed fuzzy model uses 76 fuzzy rules to
calculate output.

Input and Output Variables: In this next step the range of
23 input variables as effort multipliers scale factors and lines of
code is defined. The output variable is probability of
overestimation and it lies between 0 and 1.

Membership Functions: The membership functions are
defined for each input as well as output variables. In our
analysis we have considered Gaussian membership functions
as it demonstrated by Kushwaha and Suryakane [31] that
Gaussian membership function smoother transition in its
intervals, and the achieved results were closer to the actual
effort. The Gaussian membership function is governed by
following equation. The Gaussian membership function for
KLOC is given in Table3 [32] and STOR is shown in Fig7.

 () (
()

) (7)

 Fuzzy Rules: Fig 8shows the subsequent fuzzy rules.

IV. RESULTS AND DISCUSSIONS

In our project historical dataset of 63 projects is considered.
The estimated effort and Mean Relative Error using COCOMO
model, neural network model with back propagation and the
genetically trained neural network model is shown in Table4
and Table5. Fig 10 demonstrates the error histogram obtained
after training process. The histogram is centered on zero error
Thus our selected topology is appropriate. Fig 12 shows the
comparison between the two models. Mean square error found
is 0.0124682 after 50 generations using 10000 populations. Fig
9 substantiates that the genetically trained neural network
model outperforms the COCOMO model as well as BPNN by
significant difference. The data of BPNN is taken from the
authors‟ past research [19].

TABLE I. GENETIC ALGORITHM PARAMETERS

SNO Control parameter Value

1 Population Size 10000

2 Elite Count 4

3 Crossover 0.8

4 Generations 50

5 Initial Population 10000*251 double

6 Selection Roulette Wheel

7 Crossover Heuristic

8 Number of variables 251

9 Mutation 0.01

TABLE II. RISK FACTOR

Probability

(Fuzzy
Output)

Overestimation Risk

0-0.3 Very low low

0.3-0.5 low Moderate

0.5-0.7 High High

0.7-1 Very High Very High

Fig. 9. Fuzzy Output.

Fig. 10. Error Histogram.

TABLE III. MRE COMPARISON

KLOC Value

0-50 small
50.1-128 Moderate

128.1-512 High

512.1-up Very high

TABLE IV. MRE COMPARISON

SNO
Control

parameter
Value

1 Population Size 10000
2 Elite Count 4

3 Crossover 0.8

4 Generations 50

5 Initial Population
10000*251

double

6 Selection
Roulette
Wheel

7 Crossover Heuristic

8 Number of variables 251
9 Mutation 0.01

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

574 | P a g e

www.ijacsa.thesai.org

TABLE V. EFFORT COMPARISON

SNO

Actual Effort

Effort using

COCOMO

model

Effort using

Hybrid model

(GANN)

1 117.6 180.8134786 127.4616
2 117.6 168.9821569 124.3451
3 31.2 43.65971251 34.8585
4 36 37.9393787 37.9985
5 25.2 49.47453739 32.8746
6 8.4 10.38903049 9.4435
7 10.8 19.08279263 14.8734
8 352.8 449.5306924 399.7262
9 72 45.9777269 68.6443
10 72 287.291445 112.9243
11 24 14.08522464 20.6532
12 360 287.291445 381.3423
13 36 50.44249685 41.9123
14 215 686.648327 300.3533
15 48 51.69199249 50.5451
16 360 615.4091318 401.2176
17 324 670.4677889 400.2432
18 60 162.0906366 80.6453
19 48 51.69199249 50.4434
20 60 207.7411868 112.5542

TABLE VI. MRE COMPARISON

SNO

Actual Effort

MRE using

COCOMO

model

MRE using

Hybrid model

(GANN)

1 117.6 0.53723 0.08385714
2 117.6 0.436923 0.04735629
3 31.2 0.39935 0.11726962
4 36 0.053872 0.05551389
5 25.2 0.963275 0.30454762
6 8.4 0.326789 0.12422619
7 10.8 0.766925 0.37716667
8 352.8 0.27418 0.13301077
9 72 0.361976 0.04646806
10 72 2.990159 0.56839306
11 24 0.413107 0.13945
12 360 0.201968 0.05928417
13 36 0.40118 0.16423056
14 215 2.193713 0.396999209
15 48 0.076917 0.05302292
16 360 0.70947 0.11449333
17 324 1.069345 0.23531852
18 60 1.701511 0.34408833
19 48 0.076917 0.05090417
20 60 2.462343 0.87590333

Fig. 11. Actual Deviation v/s Predicted deviation.

-200

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Predicted deviation

Actual deviation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

575 | P a g e

www.ijacsa.thesai.org

Fig. 12. MRE comparison

Fig 11 demonstrates the actual and predicted deviations
from the actual effort. Where actual deviation denotes the
actual percentage of overestimation/underestimation and
predicted deviation denotes the predicted
overestimation/underestimation. The Figure confirms that the
developed model is accurate and provides optimistic view of
uncertainty by effectively covering all range of deviation.
Table 5 presents the computed effort values using COCOMO
and proposed model. Subsequently, Table 6 presents the
comparison of MRE values when effort is computed using
COCOMO and with the hybrid model.

V. CONCLUSION AND FUTURE SCOPE

The learning exposes that the suggested fuzzy logic based
COCOMO II model incapacitates the uncertainty and
vagueness in the inputs that is present in the conventional
COCOMO and hence increases the accurateness of software
effort estimation. By determining additional appropriate fuzzy
rule sets and by arraying technologies like type-2 fuzzy
improbability can be handled further closely and hence more
precise software effort estimation is thinkable.

REFERENCES

[1] A. Trendowicz, J. Munch, and R. Jeffery, Adam Trendowicz, J¨urgen
M¨unch, and Ross Jeffery, Software Engineering Techniques, Springer
Heidelberg Dordrecht London NewYork,2008.

[2] The Standish Group: CHAOS Chronicles. Technical report, The
Standish Group International, Inc. (2007).

[3] R. N. Charette,Why Software Fails. IEEE Spectrum ,September 2005.

[4] J.Moses., Measuring Effort Estimation Uncertainty to Improve Client
Confidence, Software Quality Journal, 10, 135–148, 2002.

[5] Boehm, B.W., Abts, C., Clark, B., Devnani-Chulani, S.: COCOMO II
Model Definition Manual. The University of Southern California (1997)

[6] Albrecht, A.J., Gaffney, J.R.: Software Function Source Lines of Code,
and Development Effort Prediction: A Software Science Validation.
IEEE Transactions on Software Engineering 9(6), 639–648 (1983)

[7] Rijwani, P., Jain, S., &Santani, D. (2014). Software Effort Estimation: A
comparison based Perspective. International Journal of Application or
Innovation in Engineering and Management (IJAIEM), 3(12), 18-29.

[8] Briand, L.C., Wieczorek, I.: Resource Modeling in Software
Engineering. Encyclopedia of Software Engineering 2 (2001)

[9] Jorgensen, M., Shepperd, M.: A Systematic Review of Software
Development Cost Estimation Studies. Software Engineering, IEEE
Transactions on Software Engineering 33(1), 33–53 (2007)

[10] Wittig, G., Finnie, G.: Estimating software development effort with
connectionist model. Information and Software Technology 39, 469–476
(1997)

[11] Dolado, J.J.: On the Problem of the Software Cost Function. Information
and Software Technology 43(1), 61–72 (2001)

[12] Anil Kumar, C. S. Yadav et al 2012. Parameter tuning of COCOMO
Model for software effort estimation using PSO. ICIAICT ISBN 978-93-
81583-34-0 pp 99-105

[13] G.R. Finnie and G.E. Wittig, ―A Comparison of Software Effort
Estimation Techniques: Using Function Points with Neural Networks,
Case-Based Reasoning and Regression Models,‖ Journal of Systems and
Software, vol. 39, pp. 281-289, 1997

[14] Heiat, Abbas. "Comparison of artificial neural network and regression
models for estimating software development effort." Information and
software Technology 44.15 (2002): 911-922.

[15] Rijwani, P., & Jain, S. (2016). Enhanced Software Effort Estimation
Using Multi Layered Feed Forward Artificial Neural Network
Technique. Procedia Computer Science, 89, 307-312.

[16] B. T. Rao, et al., A novel neural network approach for software cost
estimation using Functional Link Artificial Neural Network (FLANN),
International Journal of Computer Science and Network Security, (9)
(2009), pp. 126-131, 2009.

[17] I. Attarzadeh and S. H. Ow, Proposing a new software cost estimation
model based on artificial neural networks, in 2nd International
Conference on Computer Engineering and Technology (ICCET), (2010)
pp. V3-487-V3- 491.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

MRE % using cocomo

MRE % using hybrid model

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

576 | P a g e

www.ijacsa.thesai.org

[18] http://promise.site.uottawa.ca/SERepository/datasets/ cocomo81.arff.

[19] P. Rijwani, and S .Jain, “Comparison and Analysis of Various Artificial
Neural Networks for Software Effort Estimation”. International Journal
of Advanced Research in Computer Science and Software Engineering.

[20] Clark, Bradford, Sunita Devnani-Chulani, and Barry Boehm.
"Calibrating the COCOMO II post-architecture model." Proceedings of
the 20th international conference on Software engineering. IEEE
Computer Society, 1998.

[21] Yang, Da, et al. "COCOMO-U: An extension of COCOMO II for cost
estimation with uncertainty." Software Process Workshop. Springer,
Berlin, Heidelberg, 2006..

[22] Hota, H. S., Shukla, R., & Singhai, S. (2015). Predicting Software
Development Effort Using Tuned Artificial Neural Network.
In Computational Intelligence in Data Mining-Volume 3 (pp. 195-203).
Springer, New Delhi.

[23] C. S. Reddy and K. V. S. V. N. Raju, “An optimal neural network model
for software effort estimation,” International Journal of Software
Engineering, vol. 3, no. 1, pp. 63–78, 2010.

[24] I. Attarzadeh, et al., Proposing an Enhanced Artificial Neural Network
Prediction Model to Improve the Accuracy in Software Effort
Estimation, in Fourth International Conference on,Computational
Intelligence, Communication Systems and Networks (CICSyN), (2012),
pp. 167-172.

[25] S. K. Sehra, Y. S. Brar, N. Kaur and S. S. Sehra, Research Patterns and
Trends in Software Effort Estimation, INFSOF 5836.

[26] M. Jørgensen, A review of studies on expert estimation of software
development effort, Journal of Systems and Software 70 (1) (2004) 37–
60. doi:10.1016/ S0164-1212(02)00156-5.

[27] M. Jørgensen, T. M. Gruschke, The impact of lessonslearned sessions on
effort estimation and uncertainty assessments, IEEE Transanctions on
Software Engineering 35 (3) (2009) 368–383. doi:10.1109/TSE. 2009.2.

[28] A. Magazinius, S. B¨orjesson, R. Feldt, Investigating intentional
distortions in software cost estimation - an exploratory study, Journal of
Systems and Software 85 (8) (2012) 1770–1781. doi:10.1016/j.jss.2012.
03.026.

[29] Magne Jørgensen and Martin Shepperd, A Systematic Review of
Software Development Cost Estimation Studies, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 1,
JANUARY 2007.

[30] Kjetil Moløkken and Magne Jørgensen, A Review of Surveys on
Software Effort Estimation, Proceedings of the 2003 International
Symposium on Empirical Software Engineering (ISESE‟03) 0-7695-
2002-2/03.

[31] N.Kushwahal and Suryakane, Software Cost Estimation using the
Improved Fuzzy Logic Framework, 978-1-4799-3064-7/14,IEEE.

[32] E. Manalif , L.F. Capretz, and D. Ho, Fuzzy Rules for Risk Assessment
and Contingency Estimation within COCOMO Software Project
Planning Model, DOI: 10.4018/978-1-4666-4785-5.ch006.

[33] Reifer D.J., Boehm B.W. and Chulani S., “The Rosetta Stone: Making
COCOMO 81 files work with COCOMO II”, University of South
California.

